ГРАДИЕНТ

Категория :

Описание

ГРАДИЕНТ (лат. gradiens, gradient[is] шагающий) — векторная величина, показывающая направление наиболее быстрого изменения какой-либо функции. Понятием Г. широко пользуются в физике, физ. химии, метеорологии и других науках для характеристики скорости изменения какой-либо величины на единицу длины в направлении ее максимального роста; Г. в биологии — это количественное изменение морфол, или функциональных (в т. ч. биохим.) свойств вдоль одной из осей тела, органа или клетки на любой стадии их развития. Г., отражающий изменение какого-либо физиол, показателя (напр., интенсивности обмена веществ), называют физиол, градиентом (см. Градиент физиологический). При рассмотрении различных биол, процессов чаще встречаются с Г. электрического поля, концентрационным Г., осмотическим Г., гидростатическим Г. и температурным Г.

Градиент электрического поля в биол, объектах возникает в результате перемещения ионов внутри клеток и тканей или вследствие приложения внешнего источника электрического поля, напр, при гальванизации (см. Возбуждение).

Концентрационный градиент в живых тканях возникает при условии наличия значительной разницы в концентрации ионов во внутренней и внешней среде, напр, высокая внутренняя концентрация ионов калия и низкая концентрация ионов натрия и хлора. Так, внутри волокна сердечной мышцы крысы содержится 140 мкмолей ионов калия и 13 мкмолей ионов натрия на 1 г внутриклеточной воды. Во внешней среде содержится 2,7 мкмоля ионов калия и 150 мкмолей ионов натрия. Концентрационный Г. ионов калия может быть объяснен существованием так наз. доннановского равновесия (см. Биоэлектрические потенциалы).

Поступление и выход различных веществ из клеток происходит вследствие наличия Г. их концентрации. Скорость диффузии веществ определяется соотношением: dn/dt =Dq grad C, где n — количество диффундирующих молекул через поверхность q, D — коэф. диффузии, grad С — градиент концентрации; коэффициент диффузии определяется вязкостью среды и размером молекул вещества. Различие в скорости диффузии катионов и анионов (их подвижности) приводит к появлению диффузионного потенциала φ, который возникает на границе двух соприкасающихся растворов и описывается уравнением Нернста:

где U — подвижность катиона, V — подвижность аниона, С1 и С2 — концентрация электролита в двух соприкасающихся р-рах; R — газовая константа, T — абсолютная t°, n — заряд иона, F — число Фарадея. Диффузионный потенциал минимален, когда подвижность катиона и аниона равны или близки, напр, в случае раствора KCl. Поэтому этот электролит используется в биологии и медицине в качестве жидкостного проводника при гальванизации, электрофорезе и т. д.

Осмотический градиент характеризует разницу в величине осмотического давления (см.) в системе растворитель — раствор, разделенных полупроницаемой мембраной, т. е. проницаемой для молекул растворителя, но непроницаемой для растворенного вещества. Осмотическое давление при этом определяется как величина силы, к-рую нужно приложить к р-ру, чтобы остановить движение растворителя в сторону р-ра. При изменении осмотического давления во внешней среде клетки (напр., при его увеличении) вода будет поступать в клетку; скорость поступления воды при этом будет пропорциональна осмотическому Г. (между внутренней и внешней средой клетки). Так, для эритроцитов скорость проникновения воды составляет величину 2,5 мкм3/мсм2-мин-атм. Величина осмотического давления крови высших животных ок. 40 мм вод. ст. и составляет малую часть от всего кровяного давления. При нарушении белкового или солевого обмена изменяется также и Г. осмотического давления, напр, при его увеличении вода будет поступать в ткань, вызывая отек (см.).

Гидростатический градиент характеризует перепад давления между внешней и внутренней средой клетки, целого организма или отдельных его частей. Так, работа сердца приводит к появлению гидростатического градиента. В артериальной части кровеносной системы возникает положительное гидростатическое давление, в венозной — отрицательное (см. Кровяное давление). Гидростатическое давление может компенсировать осмотическое, что имеет место в капиллярах кровеносной системы. При росте гидростатического Г. (напр., при гипертензии) усиливается выход воды из кровяного русла в ткани, что может привести к возникновению отеков.

Температурный градиент, возникающий вследствие разности температур внутри и вне клетки, существенно влияет практически на все процессы жизнедеятельности. Так, скорость диффузии электролитов увеличивается на 30— 40% при повышении температуры на 10°. Примерно на столько же увеличивается электропроводность клеток. Перенос тепла пропорционален Г. температуры по обе стороны поверхности; при этом Q = -λgrad T, где Q — количество тепла, переносимого через теплопроводящую поверхность, λ — коэф. теплопроводности, T — абсолютная температура. Основным источником тепла в организме человека и животных являются экзотермические процессы, протекающие при работе мышц и внутренних органов. Рассеивание тепла (напр., с поверхности тела человека) может происходить также путем конвекции, излучения и испарения. Все эти процессы ускоряются с ростом температурного Г.


Библиография: Байер В. Биофизика, пер. с нем., М., 1962; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, М., 1968; Пасынский А. Г. Биофизическая химия, М., 1968.

Ю. М. Петрусевич.