ГЕМОСТАЗ

Категория :

Описание

ГЕМОСТАЗ (haemostasis; греч, haima кровь + stasis стояние) — эволюционно сложившаяся защитная реакция организма, выражающаяся в остановке кровотечения при повреждении стенки сосуда.

Г. в патологии — прекращение движения крови в кровеносном сосуде (см. кровотечения (см.). Система Г. как нормальной защитной реакции организма — совокупность кровяных (плазменных и клеточных) и сосудистых компонентов, обеспечивающих быструю остановку кровотечения при повреждении сосудов.

Первое описание Г. дал Цан (F. W. Zahn, 1882), который наблюдал формирование тромба на раневой поверхности мезентериальных сосудов лягушки. Установлено, что образование тромба обусловлено адгезией (прилипанием) тромбоцитов к травмированному участку сосуда. Комплекс морфол, изменений тромбоцитов в процессе Г., обозначенный термином «вязкий метаморфоз», описали Эберт (G. G. Eberth) и К. Шиммельбуш. С введением метода определения времени кровотечения (см.) стало возможным изучение Г. не только в эксперименте, но и в клинике. Гипотеза Роскама (J. Roskam) о сосудисто-кровяном патогенезе нарушения Г. при ряде патол, состояний организма стимулировала исследования по выяснению роли сосудистой стенки в механизме Г. [Магнус, Бернут (G. Magnus, F. Bernuth) и др. ]. Фундаментальным вкладом в учение о Г. явились работы А. А. Шмидта — основоположника ферментативной теории процесса свертывания крови. В дальнейшем эта теория была развита в трудах Е. С. Иваницкого-Василенко, Б. А. Кудряшова, А. А. Маркосяна.

Методом электронной микроскопии установлено, что сразу после повреждения сосуда к внутренней поверхности травмированного участка прикрепляются тромбоциты, часть из них образует агрегаты. Почти все тромбоциты приобретают сфероидную форму с 1—6 псевдоподиями. Через 30 сек. большинство тромбоцитов, фиксированных у раневой поверхности, находится в состоянии агрегации (прилипание друг к другу), в них преобладают электронноплотные гранулы. Отчетливо идентифицируются мембраны тромбоцитов; обнаруживаются дегранулированные тромбоциты. Наряду с изменившимися встречаются интактные тромбоциты с сохранившимися митохондриями. В участках тромбоцитарного агрегата видны фибриновые волокна. Через 1 мин. после травмы агрегаты тромбоцитов на раневой поверхности сосуда представляют или хаотически склеившуюся массу дегранулированных и гранулсодержащих тромбоцитов, или имеют форму розетки: центрально расположенные гранулсодержащие тромбоциты окружены дегранулированными тромбоцитами. По периферии тромбоцитарной розетки расположены эритроциты; между эритроцитами — фибриновые волокна. Через 7 мин. дегранулированные пластинки в агрегате увеличены в размерах, их форма многообразна. В местах соприкосновения тромбоцитов мембраны их не различаются. Фибриновые волокна, утолщенные и удлиненные, расположены между тромбоцитами.

В сети фибрина расположены эритроциты. Спустя 15 мин. у места повреждения сосуда обнаруживают фибриновые волокна, переплетающиеся с «обломками» тромбоцитов.

В некоторых случаях в гемостатическом тромбе видны только фибриновые волокна.

Содержание

Физиология

В процессе Г. принимают участие экстраваскулярная ткань, стенка сосуда, плазменные факторы свертывания крови, тромбоциты и другие форменные элементы крови. Важная роль в Г. принадлежит физиологически активным веществам (адреналин, норадреналин, серотонин и др.), местным изменениям ионных отношений, pH крови, дзета-потенциалу (разности потенциалов между дисперсной фазой и дисперсной средой, тромбоцитами и сосудистой стенкой).

Различные ткани, окружающие травмированный сосуд, имеют неодинаковую тромбопластическую активность; биол, значение этих различий для местного Г. еще не ясно. В результате взаимодействия тканевых и плазменных факторов свертывающей системы крови у места повреждения стенки сосуда образуется активный тканевой тромбопластин, включающийся в цепь последующих реакций, конечным продуктом которых является фибрин. Однако тканевой тромбопластин (менее активный, чем кровяной) имеет, вероятно, меньшее значение в Г. при ранении крупных сосудов. Окружающие сосуд ткани оказывают также и механическое сопротивление выходу крови из поврежденного сосуда, влияя, т. о., на величину кровопотери.

Роль стенки сосуда в Г. обусловлена наличием в ней ряда факторов, оказывающих влияние на процесс свертывания крови, адгезию и агрегацию тромбоцитов; при травме стенка сосуда сокращается и приток крови к раневому участку уменьшается. Стенка сосуда является эфферентным регулятором скорости свертывания крови и фибринолиза (см.). Интима сосудов заряжена отрицательно по отношению к адвентиции. При повреждении сосудов происходит реверсия потенциала и интима становится положительно заряженной, изменяется дзета-потенциал, что имеет значение для взаимодействия тромбоцитов с раневой поверхностью.

Плазменные факторы свертывания крови в организме здорового человека находятся в неактивном состоянии. Международный комитет по факторам свертывания крови ввел обозначение плазменных прокоагулянтов римскими цифрами; количество их тринадцать (с I по XIII).

Плазменные факторы свертывания крови

Фактор I — фибриноген

Фактор II — протромбин

Фактор III — тромбопластин

Фактор IV — кальций

Фактор V — ускоритель (акцелератор) превращения протромбина (Ас-глобулин)

Фактор VI — изъят из классификации Фактор VII — проконвертин Фактор VIII — антигемофильный глобулин

Фактор IX — плазменный компонент тромбопластина (Кристмас-фактор)

Фактор X — фактор Стюарта — Прауер

Фактор XI — плазменный предшественник тромбопластина Фактор XII — фактор контакта (Хагемана)

Фактор XIII — фибринстабилизирующий фактор, фибриназа

Активация системы свертывания крови происходит при соприкосновении с чужеродной поверхностью, что является пусковым механизмом внутренней системы Г. (активные факторы свертывания крови обозначают добавлением к соответствующей римской цифре буквы «а»). Завершается Г. образованием тромба у места повреждения стенки сосуда.

Участие тромбоцитов в Г. обусловлено такими их свойствами, как адгезия и агрегация, содержанием в них собственных и адсорбированных факторов свертывания крови, а также физиологически активных веществ.

Роль эритроцитов и лейкоцитов в Г. обусловлена содержанием в них большинства факторов свертывания крови. При повреждении стенки сосудов эти факторы включаются в реакцию фибринообразования. В процессе Г. эритроциты задерживаются в фибриновой сети, способствуя образованию кровяного сгустка и увеличению его массы.

Процесс Г. имеет нейрогуморальную регуляцию: экстремальные факторы, вызывая повышение тонуса симпатического отдела в. н. с., увеличивают поступление в кровь адреналина и норадреналина, что ускоряет адгезию и агрегацию тромбоцитов и активирует процесс свертывания крови в целом. Распространение процесса тромбообразования по сосудистому руслу предотвращается циркулирующими в крови антикоагулянта-ми, фибринолитическими агентами и ингибиторами адгезии и агрегации тромбоцитов — аденозином и аденозинмонофосфатом, которые образуются при распаде АДФ.

В зависимости от размеров поврежденного сосуда и роли отдельных факторов в ограничении кровопотери различают два основных механизма Г.: сосудисто-тромбоцитарный (или микроциркуляторный) и коагуляционный. В первом ведущую роль в остановке кровотечения отводят сосудистой стенке и Свертывающая система крови). Помимо этого, может возникнуть ДВС-синдром (диссеминированное внутрисосудистое свертывание крови).

Схема 1. Сосудисто-тромбоцитарный механизм гемостаза.

Сосудисто-тромбоцитарный механизм (схема 1) имеет место при остановке кровотечения из мелких сосудов: артериол, прекапилляров, капилляров и венул. Он складывается из следующих этапов: 1) кратковременный спазм сосудов, 2) адгезия тромбоцитов к раневой поверхности, 3) аккумуляция и агрегация тромбоцитов у места повреждения, 4) вязкий метаморфоз и реакция освобождения тромбоцитов, 5) вторичный спазм сосудов, 6) образование фибрина и физиол, гемостатического тромба (см.).

Под влиянием травмы повышается тонус симпатического отдела в. н. с. и происходит местный спазм сосудов, уменьшающий приток крови. Сужению сосудов способствует также и рефлекторное выбрасывание в кровоток адреналина и освобождение холинэстеразы, блокирующей ацетилхолин. Тромбоциты прилипают к поврежденным эндотелиальным клеткам и тканевым волокнам сосудистой стенки на раневой поверхности: начинается формирование гемостатического тромбоцитарного тромба.

Основными структурами сосудистой стенки, с к-рыми взаимодействуют тромбоциты, являются коллагеновые волокна, микрофибриллы и базальная мембрана. Адгезия тромбоцитов к коллагеновым волокнам не связана, по-видимому, с процессом свертывания крови, т. к. при полной несвертываемости крови (напр., в результате гепаринизации) она не нарушается. Тромбин не вызывает адгезии тромбоцитов, а усиливает ее, способствуя выделению из тромбоцитов АДФ. В механизме взаимодействия тромбоцитов с поврежденной стенкой сосуда в процессе Г. имеют, вероятно, значение электростатические силы, усиливающие прилипание тромбоцитов к раневой поверхности. Замедление кровотока и движение крови способствуют взаимодействию тромбоцитов с поврежденной стенкой сосудов.

Вслед за адгезией наступает агрегация тромбоцитов у места ранения стенки сосуда. Из поврежденных эндотелиальных клеток, а также из эритроцитов и тромбоцитов выделяется АТФ, к-рая под действием клеточной аденозинтрифосфатазы превращается в АДФ. Под влиянием последней происходит агрегация тромбоцитов (обратимая); действие АДФ на тромбоциты проявляется при наличии в среде ионов кальция и плазменного кофактора — фактора Виллебранда, фактора XIII (фибринстабилизирующего фактора) или фактора I (фибриногена). Для объяснения механизма агрегации тромбоцитов предложен ряд гипотез; наибольшее признание получила гипотеза Гаардера и Лаланда (A. Gaarder, J. Laland), которые считают, что тромбоцитагрегирующая активность АДФ обусловлена тремя свободными отрицательными валентностями: две валентности связывают один ион кальция, а третья — вместе с такой же валентностью соседней молекулы АДФ — присоединяет еще один ион кальция; агрегация тромбоцитов происходит в результате образования кальциевых «мостиков» между тромбоцитарно-нуклеотидными комплексами.

Тромбоциты, агрегирующие у раневой поверхности, подвергаются вязкому метаморфозу под влиянием тромбина. В процессе вязкого метаморфоза из тромбоцитов освобождаются факторы свертывания крови, серотонин, гистамин, адреналин, кинины, нуклеотиды, энзимы; агрегация тромбоцитов Становится необратимой. Выделение из тромбоцитов указанных факторов способствует вторичному сужению поврежденного сосуда. Параллельно идет реакция фибринообразования. Фибриновые волокна и последующая ретракция кровяного сгустка уплотняют гемостатический тромб, что приводит к окончательной остановке кровотечения.

Схема 2. Коагуляционный механизм гемостаза.

Коагуляционный механизм (схема 2) имеет место при травме крупных артерий и вен вслед за ограничением кровопотери в результате спазма сосудов, в особенности мышечного типа. Однако и в этом случае к месту повреждения стенки сосуда в первую очередь прикрепляются тромбоциты. Одновременно активируется система свертывания крови в результате сложного взаимодействия плазменных и клеточных прокоагулянтов, протекающего по типу проферментно-ферментного каскадного преобразования, и образуется фибрин. В фибриновую сеть вовлекаются форменные элементы крови, формируется кровяной сгусток, который уменьшает или полностью предотвращает кровопотери). Конечным этапом является ретракция кровяного сгустка, к-рая длится несколько часов. В результате ретракции гемостатический тромб становится более надежным. При этом из сгустка выделяется сыворотка, богатая тромбином.

Диссеминированное внутрисосудистоe свертывание крови (ДВС) — синдром, который может возникнуть при различных патологических состояниях (остром гемолизе, инфекционных процессах, интоксикациях, реакции антиген — антитело и др.). В его развитии принимают участие как сосудисто-тромбоцитарный, так и коагуляционный факторы.

Нарушение гемостаза в связи с дефектностью отдельных компонентов его системы — см. табл.

Методы исследования

Состояние Г. выявляют по показателям время кровотечения (см.), как первичного, так и вторичного, объем теряемой крови, толерантность к аспирину, прочность ранней фиксации тромбоцитарных пробок в сосудах, количество Тромбоцитов, их функциональную активность (способность к адгезии in vitro и in vivo, АДФ-, коллаген- и тромбин-агрегации).

Принцип восстановления гемостаза состоит в укреплении стенки сосуда, повышении адгезивной и агрегационной способности тромбоцитов, восстановлении утраченной или сниженной способности крови к свертыванию.

Основным принципом медикаментозного способа остановки кровотечения является дифференцированное применение гемостатических средств с учетом механизма развития кровоточивости. Поэтому, прежде чем начинать антигеморрагическую терапию, необходимо провести тщательное лабораторное исследование функционального состояния свертывающей системы крови с целью выявления основной причины нарушения гемостаза.


КЛАССИФИКАЦИЯ НАРУШЕНИЙ ГЕМОСТАЗА

Механизм

гемостаза

Локализация

травмы

Нарушения

гемостаза

Механизмы нарушения гемостаза

Сосудисто-тромбоцитарный

Артериолы,

капилляры,

венулы

Нарушение образования тромбоцитарного тромба

1.    Сосудистый (изменение основного вещества соединительной ткани)

2.    Тромбоцитарный (уменьшение количества, снижение адгезивности, агрегации и других функций тромбоцитов)

3.    Сосудистый и тромбоцитарный (изменение основного вещества соединительной ткани, уменьшение количества тромбоцитов, нарушение адгезивности, агрегации и других функций тромбоцитов)

Коагуляционный

Крупные вены и артерии

Нарушение процесса формирования гемостатического коагуляционного тромба

Система гемостаза функционирует нормально, но у места повреждения тромб не образуется вследствие высокого давления в сосуде и большой скорости кровотока

Нарушение процесса фибринообразования

Кровяной (снижение содержания одного или нескольких прокоагулянтов, повышение антикоагулянтной активности крови, одновременное уменьшение содержания прокоагулянтов и повышение антикоагулянтной активности крови)

Лизис тромба

Кровяной (в сосудистое русло поступает большое количество активаторов плазминогена)

Диссеминированное внутрисосудистое свертывание крови

Сосуды малого и большого круга кровообращения

Первичное локальное внутрисосудистое свертывание крови, вторичное поражение стенки сосуда

Кровяной, тромбоцитарный и сосудистый (активация свертывающей системы крови, локальное свертывание крови по типу феномена Санарелли — Швартцмана — местное и генерализованное)

Агрегация тромбоцитов, стаз крови, вторичное поражение сосудов

Тромбоцитарный, кровяной и сосудистый (индуцирование агрегации тромбоцитов, активация свертывающей системы крови)

Первичное тотальное внутрисосудистое свертывание фибриногена, вторичный фибринолиз и фибриногенолиз, нарушение процесса образования тромбоцитарного и коагуляционного тромба

1.    Кровяной (потребление факторов свертывания крови, активация фибринолиза, циркуляция свободного плазмина и продуктов деградации фибрина и фибриногена, изменение свойств фибриногена

2.    Тромбоцитарный (уменьшение количества, нарушение адгезивности и агрегации и других функций тромбоцитов)


Библиография: Балуда В. П. и Сушкевич Г. Н. Роль тромбоцитов в гемостазе и поддержании резистентности стенкй сосудов в норме и при патологий, Пробл, гематол. и перелив, крови, т. 16,. jvft 5, с. 28, 1971, библиогр.; Гусейнов Ч. С. Физиология и патология тромбоцитов, М., 1971, библиогр.; Коблов Л. Ф. Методы и приборы для исследования гемостаза, М., 1975, библиогр.; Кудряшов Б. И. Биологические проблемы регуляции жидкого состояния крови и ее свертывания, М., 1975, библиогр.; К у з-никБ.И. и Скипетров В. П. Форменные элементы крови, сосудистая стенка, гемостаз и тромбоз, М., 1974, библиогр.; Маркосян А. А. Физиология тромбоцитов, Л., 1970, библиогр.; В о г n G. Y. Aggregation of blood platelets by adenosine diphosphate and its reversal, Nature (Lond.), v. 194, p. 927, 1962; Gaarder A. a. L a 1 a n d S. Hypothesis for the aggregation of platelets by nucleotides, ibid., v. 202, p. 909, 1964; H&mostaseologische Untersuchungen, hrsg. v. J. Rex u. G. Bach, B., 1974; HellemA. a. OwrenP. A. The mechanism of hemostatic function of blood platelets, Acta haemat. (Basel), v. 31, p. 230, 1964; Human blood coagulation, haemostasis and thrombosis, ed. by R. Biggs, Oxford, 1972; J o h n s o n S. A. a. o. The function of platelets, Transfusion (Philad.), v. 6, p. 3, 1966, bibliogr.; Liischer E. F. Platelets in haemostasis and thrombosis, Brit. J. Haemat., v. 13, p. 1, 1967; Ratnoff O. D. Some recent advances in the study of hemostasis, Circulat. Res., v. 35, p. 1, 1974, bibliogr.; Willis A. L. a. o. An endoperoxide aggregator (LASS) formed in platelets in response to thrombotic stimuli, Prostaglandins, v. 8, p. 453, 1974.

В. П. Балуда, Г. H. Сушкевич.