САМОРЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ

Категория :

Описание

Саморегуляция физиологических функций — один из механизмов поддержания жизнедеятельности организма на относительно постоянном уровне.

Саморегуляция физиологических функций присуща всем формам организации жизнедеятельности и возникла в процессе эволюции как результат приспособления к действию окружающей среды. Таким путем были выработаны общие регуляторные механизмы различной физиологической природы (нейрогуморальные, эндокринные, иммунологические и др.), направленные на достижение и поддержание гомеостаза (см.).

В 1932 г. И. П. Павлов писал, что живой организм является системой, в высочайшей степени саморегулирующейся, саму себя поддерживающей, восстанавливающей, поправляющей и даже совершенствующей. Он предполагал наличие двух уровней Саморегуляции физиологических функций: низшего (на уровне подкорковых структур мозга) и высшего (с определяющим участием коры головного мозга). В 1933—1935 гг. М. М. Завадовский на основании изучения гуморальных механизмов регуляции в растущем организме выдвинул общебиологический принцип регуляции процессов развития и гомеостаза «плюс — минус взаимодействие». По его мнению, развитие осуществляется на основе взаимодействия организма и окружающей среды, причем развитие органов происходит на основе противоречивого взаимодействия по меньшей мере двух органов. Развивающееся животное, по его мнению, представляет собой саморегулирующуюся систему с высокой степенью устойчивости, в к-рой регуляция присуща всему организму и каждому звену в отдельности. Помимо взаимопротиворечивых отношений между органами, М. М. Завадовский подчеркивал наличие взаимоотношений типа «плюс — плюс» и «минус — минус», к-рые обеспечивают гармоничное развитие организма. Исследуя в основном закономерности гуморальной регуляции, он большое значение придавал нервной регуляции и взаимоотношениям организма с внешней средой.

В 1935 г. П. К. Анохин ввел представление о функциональной системе, являющейся, по его мнению, конкретным аппаратом Саморегуляции физиологических функций на всех уровнях жизнедеятельности и для всех приспособительных функций организма и сформулировал ее основные закономерности (см. акцептора результата действия (см.).

В ходе исследования роли афферентации в осуществлении локомоторных актов (бег, ходьба, прыжки и т. д.) Н. А. Бернштейн выдвинул идею о сенсорных коррекциях, в соответствии с к-рой непрерывное соучастие потока афферентной сигнализации контрольного или коррекционного значения является необходимым компонентом двигательных реакций. По мнению Н. А. Бернштейна, каждый случай упорядоченного реагирования представляет собой непрерывный циклический процесс взаимодействия организма с переменчивыми условиями окружающей или внутренней среды организма. При этом огромную роль играет контрольно-коррекционная афферентация.

Т. о., уже в 40-х годах 20 в. была выявлена ведущая роль различного рода афферентных влияний в процессах С. ф. ф. организма. Позднее, под влиянием идей кибернетики (см.), более общепринятым стал термин «обратная связь», применяемый вначале при создании технических регулирующих устройств, а затем перенесенный и на биолог, объекты.

Возникновение жизни на Земле было связано с возникновением и поддержанием на молекулярном уровне подвижного равновесия в устойчивой организации, что в итоге, по мнению И. И. Шмальгаузена, привело к приобретению нового качества живого — самовоспроизведения. В основе жизни любой клетки лежат обратимые процессы синтеза и распада веществ, происходящие с участием ферментов. Сохранение подвижного устойчивого состояния и способность к его восстановлению обеспечивается регулирующими механизмами внутри самой клетки (так наз. цитогенетический гомеостаз). Активирующее взаимодействие компонентов в любой функциональной системе, так наз. положительная обратная связь, ведет к согласованному последовательному развитию самой системы. В случае, когда один из компонентов оказывает стимулирующее, а другой тормозящее действие, проявляется отрицательная обратная связь и устанавливается подвижное равновесие. Все процессы формирования зародыша, начиная с момента оплодотворения яйцеклетки, дробления, дифференцировки и т. д., осуществляются при взаимной стимуляции отдельных компонентов, благодаря чему достигается прогрессивное развитие. Результат формообразования контролируется с помощью метаболитов, к-рые являются средством обратной связи от цитоплазмы развивающихся компонентов к специфическим структурам ядра клетки (см.).

Основным условием сохранения жизни многоклеточного организма является устойчивость его основных внутренних констант. К ним относятся показатели гомеостаза, определяющие нормальную жизнедеятельность организма (уровни осмотического и кровяного давления, концентрация сахара и минеральных веществ в крови, соотношение парциального напряжения кислорода и углекислоты, pH крови, температура тела и т. д.). Любое отклонение значений этих констант от исходных уровней является начальным толчком, «запускающим» процессы С. ф. ф. на достижение исходного или близкого к нему уровня того или иного показателя.

В опытах с измерением кровяного давления и регистрацией активности барорецепторов было установлено, что поддержание константного уровня функции всегда является следствием взаимодействия двух сил: нарушающих этот уровень и восстанавливающих его. В результате такого соотношения гомеостатические показатели, как правило, возвращаются к исходному уровню. Так, восстановление постоянного уровня прессорных реакций (см.).

Практически все константы организма непрерывно колеблются около постоянных уровней. Существуют константы «жесткие» (напр., показатели сахара крови или осмотического давления), допускающие лишь незначительные отклонения от своего уровня, и константы «пластические» (напр., уровень кровяного давления или питательных веществ в крови), варьирующие в довольно большом диапазоне и в течение длительного времени. Значительные вариации уровня кровяного давления, свойственные здоровому человеку в норме, имеют определенный физиологический смысл. Напр., при усиленной мышечной работе подъем кровяного давления обеспечивает снабжение кровью работающих мышц, а в экстремальных условиях — мозга, сердца и т. д. Однако во всех случаях такого рода изменений показателей кровяного давления в результате С. ф. ф. его нормальные значения восстанавливаются.

Установлен еще один принцип С. ф. ф.— принцип многосвязного регулирования, заключающийся в том, что отклонение от нормы какого-либо показателя в многосвязной системе приводит к перераспределению значений всех регулируемых показателей. Иными словами, при действии возмущающего фактора, напр, при вдыхании животным углекислого газа, происходит переход регулируемых показателей (напр., pH, pCO2, pO2 в ликворе, крови и ткани дыхательного центра) на новый уровень, вследствие чего поддерживается минимум сдвига каждого из них, хотя и не происходит возврата к прежним показателям.

Т. о., с позиций теории функциональных систем, конечный результат действия является именно тем фактором, к-рый формирует конкретную функциональную систему. Аппарат ее может быть очень сложным, включающим процессы Саморегуляции физиологических функций как внутри организма, так и в окружающей среде. В частности, при обеднении крови питательными веществами, «голодная» кровь раздражает центры гипоталамуса и приводит в генерализованное возбуждение ряд структур мозга, что выражается в формировании Голод, как физиологическое явление). Начинается поиск пищи и утоление голода, в результате чего происходит «сенсорное насыщение», а затем восстановление нарушенных констант крови до нормального уровня.

Первыми в С. ф. ф. в организме начинают участвовать рецепторы тканей и органов, информирующие вначале о сдвигах в уровнях тех или иных жизненных констант, затем о поэтапных результатах действия и, наконец, о параметрах конечного приспособительного эффекта. Характерным свойством всех периферических и внутрицентральных рецепторов различной модальности является их специфическая чувствительность р: изменениям определенных констант, что и обеспечивает их относительное постоянство. Это свойство, выработанное в процессе длительной эволюции и закрепленное наследственностью, сохраняется на протяжении всей жизни. В то же время состав компонентов С. ф. ф. может широко варьировать и взаимозаменяться при изменении путей достижения конечного приспособительного результата. Информация о результатах совершенного действия является заключительным этапом поведенческого акта, сигнализируя в ц. н. с. об эффекте произведенного действия. В случае достижения результата, соответствующего целевой установке, действие прекращается и начинается следующий этап поведения. При несовпадении результата действия с намеченной целью «запускается» ориентировочно-исследовательская реакция (см.), поиск и реализация соответствующих действий для достижения цели.

В С. ф. ф. участвуют все уровни ц. н. с. Так, смена вдоха п выдоха обеспечивается дыхательным центром продолговатого мозга (см. Дыхательный центр). Растяжение альвеол в результате поступления в них воздуха вызывает возбуждение заложенных в их стенках рецепторов, к-рое по блуждающим нервам передается к инспираторным нейронам продолговатого мозга. В процессе расширения альвеол увеличивается частота импульсации; при достижении критической частоты (70— 100 имп/сек.) она тормозит активность инспираторных и вызывает возбуждение экспираторных нейронов. Вдох сменяется выдохом. В свою очередь, активность экспираторных нейронов затормаживается деятельностью инспираторных нейронов. Однако ритмическая активность дыхательного центра определяется вышележащими структурами ствола мозга. Перерезка мозга на уровне ствола приводит к резким нарушениям дыхания и животные быстро погибают от ацидоза; животные с перерезкой мозга выше четверохолмий могут жить значительно дольше без заметных признаков нарушения дыхания, но в условиях полного покоя. Этот факт говорит о том, что непосредственная регуляция газового состава крови осуществляется на уровне ствола мозга. Наконец, процесс приведения объема вдыхаемого воздуха в соответствие с потребностями организма во время какой-либо приспособительной деятельности обеспечивается регулирующими механизмами высших отделов ц. н. с.

Начальным толчком С. ф. ф. является возбуждение периферических или центральных рецепторов, особенно тех, к-рые расположены в сино-каротидной и аортальной областях. Оно происходит в результате нарушения нормального соотношения газов крови (С02 или 02). Возбуждение по аортальным или синокаротидным нервам передается в дыхательный центр и в более высокие отделы ц. н. с. В них происходит головного мозга (см.).

Большую роль в С. ф. ф. играют также нейрогуморальные и гормональные влияния (см. Рецепторы, клеточные рецепторы), лежат механизмы обратной положительной и отрицательной связи. Обладая регуляторной функцией и выделяясь клетками определенной железы, гормоны регулируют обмен веществ в клетках-мишенях, принадлежащих другой ткани. Так, половые стероидные гормоны, вырабатываемые яичниками и семенниками, воздействуют на гипоталамические механизмы, регулирующие гонадотропную функцию передней доли гипофиза и отделы гипоталамуса, связанные с половым поведением. В этом случае гипоталамические клетки являются клетками-мишенями эстрогенов.

Процессы Саморегуляции физиологических функций имеют место на всех уровнях жизни от молекулярного до надвидового. Изучение механизмов С. ф. ф. на молекулярном уровне было начато Умбаргером (H. E. Umbarger) в 1956 г. при изучении синтеза лейцина и пиридиннуклеотидов. Показано, что в биохимическом процессе, происходящем в бес-клеточных экстрактах или в живой клетке, определенная концентрация конечного продукта является угнетающим агентом для всего процесса. Промежуточные продукты биосинтеза подобным действием не обладают. Избирательность такого рода обеспечивает направленность регуляции, т. е. осуществляется саморегуляция процесса образования конечного продукта реакции. Последний, по принципу обратной отрицательной связи, взаимодействует с ферментами и, тормозя их активность, останавливает весь биохим. процесс. Существует большое количество ферментов, взаимодействие к-рых с компонентами клетки ведет к ее прогрессивному развитию и усовершенствованию, что определяется как положительная обратная связь. Т. о., живые клетки имеют чувствительные биохим. механизмы, к-рые выявляют и восполняют сдвиги концентрации веществ, нарушающих их стационарное состояние.

Достаточно хорошо изучена внутриорганная Саморегуляция физиологических функций. Так, изолированное от всех гуморальных и нервных влияний сердце лягушки продолжает длительное время функционировать, т. е. происходит внутриорганная саморегуляция сердечных сокращений. При длительном раздражении блуждающего нерва сердце лягушки или теплокровного животного выходит из состояния торможения (так наз. феномен ускользания). Механизм этого типа саморегуляции состоит в том, что выделяющийся из окончаний блуждающего нерва ацетилхолин взаимодействует с холинорецепторами сердечной мышцы и, изменяя структуру клеточного белка, «запускает» цепь биохим. процессов, в итоге к-рых сердце останавливается. Полагают, что при продолжающемся раздражении нерва в миокарде выделяется физиологически активное вещество макроэргической природы, к-рое, тормозя реакцию ацетилхолина с рецепторами, усиливает сердечные сокращения. В результате сердце выходит из состояния торможения. Подобного типа реакции в сердечной мышце установлены при длительном раздражении сердечной ветви симпатического нерва. Конечный продукт биохим. процесса активирует первичную реакцию между медиатором — адреналином и эффекторной клеткой миокарда, т. е. реакцию взаимодействия адреналина с адренорецептором. В результате сердце останавливается или урежает свои сокращения.

В целом организме С. ф. ф. является наиболее сложной, происходит с участием многочисленных нейро-гуморальных, нервных и гормональных влияний. Важную роль при этом играют физиолог, параметры внутриклеточной среды (см. Системогенез).

Начиная с 70-х гг. 20 в. усиленно развивается учение о популяциях животных как о биологических системах надорганизменного уровня (см. естественным отбором (см.), что вместе с половым процессом обеспечивает преобразование генетической структуры популяции. Положительная оценка фенотипов ведет к увеличению концентрации определенных генов в популяции и усилению их результата в особях следующих поколений — т. е. к размножению (регуляция с положительной обратной связью). Регуляция с обратной отрицательной связью представляет собой стабилизирующую форму естественного отбора, при к-рой происходит элиминация фенотипа и, следовательно, уменьшение концентрации характеризующих его генов. Результатом является поддержание стационарного состояния данной популяции при определенных условиях существования. Борьба за существование рассматривается как контрольный механизм, в к-ром дается оценка отдельным особям, популяциям или видам.

Т. о., процесс Саморегуляции физиологических функций в клетке, организме, популяции и виде обеспечивается наличием обратных связей, к-рые входят в состав основных узловых механизмов функциональных систем, а сам процесс всегда имеет циклический характер.

В патологии, при перенапряжении механизмов С. ф. ф. происходит нарушение устойчивости тех или иных констант организма и, как следствие, возникновение целого ряда защитных приспособительных реакций (см. компенсаторные процессы (см.), использующие характерные для нормы способы мобилизации саморегуляторных механизмов. Принцип «плюс — минус взаимодействия» М. М. Завадовского оказался полезным в расшифровке патогенеза ряда эндокринных заболеваний (гипертиреоз, микседема, диабет и т. д.). Накоплен большой материал, показывающий применение и значение этого принципа в клинике. Известны наблюдения, свидетельствующие, что причиной развития дисгормональных опухолей является нарушение осуществления принципа «плюс — минус взаимодействия».



Библиография: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; он же, Очерки по физиологии функциональных систем, М., 1975, библиогр.; он же, Философские аспекты теории функциональных систем, М., 1978; он же, Узловые вопросы теории функциональных систем, М., 1980; Бернштейн Н. А. Очерки по физиологии движений и физиологии активности, М., 1966; Завадовский М. М. Противоречивое взаимодействие между органами в теле развивающегося животного, М., 1941; Кафиани К. А. и Костомарова А. А. Информационные макромолекулы в раннем развитии животных, М., 1978; Механизмы гормональных регуляций и роль обратных связей в явлениях развития и гомеостаза, под ред. М. С. Мицкевича, М., 1981; Мецлер Д. Э. Биохимия, Химические реакции в живой клетке, пер. с англ., т. 1—3, М., 1980; Общие вопросы физиологических механизмов, Анализ и моделирование биологических систем, под ред. П. К. Анохина, М., 1970; Прибрам К. Языки мозга, Экспериментальные парадоксы и принципы нейропсихологии, пер. с англ., М., 1975; Слоним А. Д. Экологическая физиология животных, М., 1971; Судаков К. В. Биологические мотивации, М., 1971; Функциональные системы организма, сост. К. В. Судаков, М., 1976; Шмальгаузен Й. И. Кибернетические вопросы биологии, Новосибирск, 1968.


E. Л. Голубева.