МИКРОСКОП

Категория :

Описание

Микроскоп — оптический прибор для получения увеличенных изображений объектов или деталей их структуры, не видимых невооруженным глазом; относится к числу наиболее распространенных приборов, применяемых в биологии и медицине.

Содержание

Историческая справка

Способность систем из двух линз увеличивать изображение предметов была известна мастерам, изготовлявшим очки (см.). О таких свойствах полушаровидных и плосковыпуклых линз знали оптики-ремесленники Нидерландов и Сев. Италии в 16 в. Есть сведения, что приблизительно в 1590 г. прибор типа Микроскопа был построен Янсеном (Z. Jansen) в Нидерландах.

Сначала появились простые Микроскопы, состоящие из одного объектива (см. Лупа), а затем были сконструированы более сложные Микроскопы, имеющие, кроме объектива, и окуляр.

Быстрое распространение и совершенствование Микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный Микроскоп (1609 —1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской «Академии зорких» («Academia dei lincei») И. Фабером был предложен термин «микроскоп».

Первые успехи, связанные с применением Микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), к-рый первым описал растительную клетку (ок. 1665 г.).

А. Левенгук с помощью Микроскопа обнаружил и зарисовал сперматозоиды, различных простейших, детали строения костной ткани (1673 — 1677).

В 1668 г. Б. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа; в 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, Микроскопы стали монтировать из тех основных деталей, к-рые входят в состав современного биологического Микроскопа.

В начале 18 в. Микроскопы появились в России; здесь Эйлер (Z. Euler) впервые разработал методы расчета оптических узлов микроскопа.

В 18 и 19 вв. М. продолжали совершенствоваться. В 1827 г. Амичи (G. В. Amici) впервые применил в М. иммерсионный объектив.

В конце 18 — начале 19 в. была предложена конструкция и дан расчет ахроматических объективов для М., благодаря чему их оптические качества значительно улучшились, а увеличение объектов, обеспечиваемое такими М., возросло с 500 до 1000 раз.

В 1850 г. английский оптик Сорби (Н. С. Sorby) сконструировал первый микроскоп для наблюдения объектов в поляризованном свете.

В 1872—1873 гг. Аббе (Е. Abbe) разработал ставшую классической теорию образования изображений несамосветящихся объектов в М. Труды англ. оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии.

В 1903 г. Р. Жигмонди и Зидентопф (H. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный М., в 1935 г. 3ернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в М. прозрачных, слабо рассеивающих свет объектов. В середине 20 в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A.Wilska) был изобретен аноптральный М.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем М. и микроскопической техники внесли М. В. Ломоносов, И. П. Кулибин, Л. И. Мандельштам, Д. С. Рождественский, А. А. Лебедев, С. И. Вавилов, В. П. Линник, Д. Д. Максутов и др.

Устройство биологического микроскопа

Рис. 1. Внешний вид биологического микроскопа: 1 —подковообразное основание (штатив, ножка, или башмак); 2 — макровинты тубуса; 3 — тубусодержатель; 4 — окуляры; 5 —бинокулярная насадка; 6 — головка для крепления револьвера с посадочным гнездом для смены тубусов; 7 — винт крепления бинокулярной насадки; 8— револьвер на «салазках»; 9 — объективы; 10 — предметный столик; 11 — барашек продольного движения препаратоводителя; 12 — барашек поперечного движения препаратоводителя; 13 — апланатический конденсор прямого и бокового освещения; 14 — центрировочный винт предметного столика; 15 — головка винта, фиксирующего верхнюю часть предметного столика; 16 — кронштейн конденсора; 17 — микровинт тубуса; 18 — зеркало; 19 — коробка с микромеханизмом.

Биологический Микроскоп (рис. 1) крепится на массивном штативе (основании), чаще всего имеющем подковообразную форму. Основание снабжено кронштейном, внутри которого находится коробка микромеханизма тонкой настройки тубуса М. Кроме того, коробка микромеханизма имеет направляющую для кронштейна конденсора. Сверху к коробке микромеханизма при помощи особого кронштейна прикреплен вращающийся центрирующийся столик. Дугообразный тубусодержатель в нижней своей части снабжен макровинтом с двумя барашками, служащим для грубого движения тубуса. Верхняя часть тубусодержателя снабжена снизу головкой для крепления револьвера с гнездами для объективов, а сверху — специальным посадочным гнездом для крепления сменных тубусов: бинокулярной насадки для визуальных исследований и монокулярного прямого тубуса для фотографирования.

Предметный столик М. имеет устройство для перемещения рассматриваемого препарата в направлениях, перпендикулярных друг другу. Отсчет передвижения препарата в том или другом направлении может быть произведен по шкалам с нониусами с точностью до 0,1 мм.

Рис. 2. Принципиальная оптическая схема биологического микроскопа с осветителем: 1 — глаз наблюдателя; 2 — окуляр; 3 — рассматриваемый объект (препарат); 3 — образуемое окуляром мнимое перевернутое изображение объекта, лучи от которого, проходя через оптические системы глаза наблюдателя, создают на сетчатке глаза действительное изображение объекта; 3" — перевернутое и увеличенное действительное изображение объекта; 4 — объектив; 5 — конденсор, концентрирующий на объекте пучок света, отражающегося от зеркала; 6 — апертурная диафрагма; 7 — зеркало; 8 — полевая диафрагма; 9 — линза-коллектор осветителя; 10 — источник света; 11 — предметное стекло, на котором располагают рассматриваемый объект; D — расстояние наилучшего видения; стрелками показан ход лучей в оптической системе микроскопа.

Принципиальная оптическая схема биол. М. приведена на рисунке 2.

Рис. 3. Апланатический двухлинзовый конденсор прямого и бокового освещения с апертурой (светосилой) 1,4 (А) и сменный однолинзовый конденсор с апертурой 0,4 (Б): 1—рычажок ирис-диафрагмы; 2—вращающийся патрубок конденсора; 3 — линзы в металлической оправе; 4 — вращающаяся площадка ирис-диафрагмы; 5 — винт смещения ирис-диафрагмы для получения косого освещения; 6 — светофильтр в оправе.

Лучи света, отраженные зеркалом, собираются конденсором. Конденсор (рис. 3) состоит из нескольких линз, вмонтированных в металлическую оправу, закрепляемую винтом в гильзе кронштейна конденсора, и представляет собой светосильный короткофокусный объектив. Светосила (апертура) конденсора зависит от числа линз. В зависимости от методов наблюдения применяют различные виды конденсоров: конденсоры светлого и темного поля; конденсоры, создающие косое освещение (под углом к оптической оси М.); конденсоры для исследования по методу фазового контраста и др. Конденсор темного поля для проходящего света обеспечивает освещение препарата полым конусом света с большим углом; конденсор для отраженного света представляет собой кольцеобразную зеркальную или зеркально-линзовую систему вокруг объектива, так наз. эпиконденсор.

Между зеркалом и конденсором расположена ирисовая диафрагма (ирис-диафрагма), иначе называемая апертурной, т. к. степень ее раскрытия регулирует апертуру конденсора, к-рая всегда должна быть чуть-чуть ниже апертуры применяемого объектива. Диафрагма в конденсоре может располагаться и между его отдельными линзами.

Основным оптическим элементом М. является объектив. Он дает действительное перевернутое и увеличенное изображение изучаемого объекта. Объективы представляют собой систему взаимно центрированных линз; ближняя к объекту линза называется фронтальной. Даваемое ею действительное изображение объекта страдает рядом аберраций (см.), свойственных каждой простой линзе, к-рые устраняются вышележащими коррекционными линзами. Большинство этих линз весьма сложно: они изготовлены из разных сортов стекла или даже других оптических материалов (напр., флюорита). Объективы по степени исправления аберраций делятся на несколько групп. Наиболее простыми являются ахроматические объективы, у них исправлена хроматическая аберрация для двух длин волн и сохраняется лишь небольшая остаточная окраска изображения (ореол). Несколько меньшие хроматические аберрации имеют полуапохроматические, или флюоритовые, системы: их хроматическая аберрация исправлена для трех длин волн. Планахроматические и планапохроматические системы устраняют кривизну изображения (т. е. дают плоское поле изображения) и хроматические аберрации. Каждый объектив характеризуется свойственным ему собственным увеличением, фокусным расстоянием, численной апертурой и нек-рыми другими константами. Собственное увеличение зависит от переднего фокусного расстояния объектива, по величине к-рого объективы делятся на сильные (с фокусным расстоянием 1,5—3 мм), среднесильные (с фокусным расстоянием 3,5 мм), средние (фокусное расстояние 5—12 мм) у слабые (фокусное расстояние 12—25 мм) и слабейшие (фокусное расстояние более 25 мм).

Численная апертура объективов (и конденсоров) определяется произведением Sin половины отверстного угла, под к-рым объект «видит» центр фронтальной линзы объектива (ее «зрачок») и фронт линзы конденсора, на показатель преломления среды, заключенной между этими оптическими системами. Если этой средой является воздух, чередующийся с пластинкой предметного стекла, на к-ром лежит объект, то численная апертура не может быть выше 0,95, т. к. показатель преломления воздуха равен 1. Для того чтобы повысить численную апертуру, объектив погружают (иммергируют) в воду, глицерин или иммерсионное масло, т. е. в такую среду, показатель преломления к-рой выше 1. Такие объективы называют иммерсионными. Объективы М. для изучения объектов в проходящем свете рассчитаны на применение покровных стекол, объективы для исследований в падающем свете позволяют рассматривать объект без покровного стекла.

Рис. 4. Схематическое изображение окуляра Гюйгенса (I) и хода лучей в нем, образующих изображение (II): 1,9 — полевая линза; 2,6 — диафрагма; 3 — оправа окуляра; 4,8 — глазная линза; 5 — главная оптическая ось; 7 — выходной зрачок; 10 — первичное изображение; H и H' — основные плоскости.
Рис. 5. Схематическое изображение окуляра Рамсдена (I) и хода лучей в нем, образующих изображение (II): 1 — оправа окуляра; 2,5 — диафрагма; 3,6 — полевая линза; 4,7 — глазная линза; 8 — выходной зрачок. Комбинация полевой и глазной линз в окуляре Рамсдена дает приблизительно такой же ход лучей, как и одна глазная линза окуляра Гюйгенса.

Изображение, к-рое дает объектив, рассматривают через оптическую систему, называемую окуляром. Изображение в окуляре — увеличенное мнимое. Увеличение окуляров обычно указано на их оправе, напр. 5х, 10х, 15х и т.п. Окуляры можно разделить на две основные группы: нормальные, с обычным полем зрения, и широкоугольные. Из различных систем окуляров наиболее распространенными являются окуляр Гюйгенса и окуляр Рамсдена. Окуляр Гюйгенса (рис. 4), который состоит из двух плоско-выпуклых линз, обращенных выпуклой стороной к объективу, применяется при работе с ахроматическими и планахроматическими объективами при небольших увеличениях. Окуляр Рамсдена (рис. 5) состоит также из двух плоско-выпуклых линз, но обращенных выпуклыми сторонами друг к другу. Этот окуляр можно использовать и в качестве лупы (см.).

Для исправления (компенсации) остаточных хроматических аберраций объектива служат так наз. компенсационные окуляры; наиболее сильные из них дают увеличение в 20 раз.

Компенсационные окуляры состоят из комбинации склеенных и одиночных линз, подобранных таким образом, что их хроматическая ошибка обратна остаточному хроматизму апохроматического объектива, и поэтому компенсирующих остаточный хроматизм объектива. Фотоокуляры и проекционные окуляры служат для проектирования изображения на фотопленку или экран. В нек-рых случаях в М. вместо окуляров применяют так наз. гомалы — оптические системы, исправляющие кривизну изображения апохроматических объективов и предназначенные для проектирования изображения и фотографирования. Для измерения размеров изучаемых микроскопических объектов применяют окуляр-микрометр (см.).

Осветители для микроскопа

Источником света для Микроскопа могут служить самые разнообразные лампы: лампы накаливания, ртутно-кварцевые и др.

При работе с мощными источниками света для предохранения препаратов от перегревания или высыхания применяют теплозащитные фильтры (цельностеклянные или заполненные жидкостью полупрозрачные пластинки), поглощающие световые лучи неиспользуемых длин волн (напр., лучи длинноволнового участка спектра) и тепловые лучи. При исследовании препарата в проходящем свете источник света располагается под объектом, при исследовании в отраженном свете — над объектом или сбоку от него. В нек-рых, гл. обр. исследовательских, М., напр. МБИ-6, МБИ-15 и др., специальные осветители входят в состав конструкции М. В других случаях применяют выпускаемые промышленностью осветители различных марок. Нек-рые из них имеют трансформаторы, стабилизирующие напряжение, подаваемое на лампу, и реостаты для регулирования накала лампы.

Наиболее простым по устройству является осветитель ОС-14. Его применяют при наблюдении микрообъектов в проходящем свете в светлом поле. Осветитель ОИ-19 имеет более интенсивный источник света и используется для наблюдений в светлом и темном полях, методом фазового контраста и пр., а также для микрофотографирования в светлом поле. Осветитель ОИ-25 предназначен для наблюдений в проходящем свете. Он устанавливается непосредственно под конденсором вместо зеркала. Этот осветитель часто используют при работе с портативными моделями М. Осветитель ОИ-9М применяют гл. обр. при работе в проходящем свете с поляризационными М.; осветитель ОИ-24 используют при работе с биологическими и поляризационными М. Он предназначен для фотографирования микрообъектов и имеет набор светофильтров. Люминесцентный осветитель СИ-18 применяют для работы с биол., люминесцентными и другими М. Источником света в нем служит ртутно-кварцевая лампа, позволяющая работать со светом УФ-части спектра, как проходящим, так и отраженным.

Оптическая схема и принцип действия микроскопа

Построение изображения в Микроскопе можно объяснить с точки зрения геометрической оптики. Лучи света от источника света через зеркало и конденсор попадают на объект. Объектив строит действительное изображение объекта. Это изображение рассматривается через окуляр. Общее увеличение М. (Г) определяется как произведение линейного увеличения объектива (β) на угловое увеличение окуляра (Гок) : Г = β*Гок; β = Δ/f'об , где Δ — расстояние между задним фокусом объектива и передним фокусом окуляра, a f'об — фокусное расстояние объектива. Увеличение окуляра Гок = 250/f'ок , где 250 — расстояние от глаза до изображения в мм, f'ок — фокусное расстояние окуляра. Увеличение объективов обычно составляет от 6,3 до 100, а окуляров — от 7 до 15. Общее увеличение М. находится в пределах 44-1500; его можно подсчитать путем умножения величин, характеризующих увеличение окуляра и объектива. Технически возможно создать М., объективы и окуляры к-рых дадут общее увеличение, значительно превышающее 1500. Однако обычно это нецелесообразно. Существенный вклад в построение изображения в М. вносят явления дифракции и интерференции света. Каждая малая точка освещенного объекта, согласно теории Гюйгенса, сама становится как бы центром новой световой волны, распространяющейся по всем направлениям. Все возникающие волны при этом интерферируют, образуя дифракционные спектры, при этом возникают темные и светлые участки (минимумы и максимумы). По теории Аббе изображение в М. получается подобным объекту лишь в том случае, если в объектив попадут все достаточно интенсивные максимумы. Чем меньше максимумов участвует в построении изображения объекта, тем меньше изображение сходно с объектом.

Типы микроскопов

Кроме биологического М. различают стереоскопический, контактный, темнопольный, фазово-контрастный, интерференционный, ультрафиолетовый, инфракрасный, поляризационный, люминесцентный, рентгеновский, сканирующий, телевизионный, голографический, микроскопы сравнения и другие типы М. Нек-рые из них, напр, фазово-контрастный и люминесцентный, могут быть при необходимости созданы на базе обычного биол. М. с помощью соответствующих приставок.

Стереоскопический микроскоп представляет собой, по сути дела, два М., объединенных единой конструкцией таким образом, что левый и правый глаза видят объект под разными углами. Это дает стереоскопический эффект, облегчающий исследование многих объемных объектов. Этот М. широко применяется в различных сферах медико-биологических исследований. Особенно необходим он при проведении микроманипуляций в ходе наблюдения (биол, исследования, микрохирургических операций и т. п.). Удобство ориентировки в поле зрения М. создается включением в его оптическую схему призм, к-рые играют роль оборачивающих систем: изображение в таких стереоскопических М. прямое, а не перевернутое.

Стереоскопические М. имеют, как правило, небольшое увеличение, не более чем в 120 раз. Выпускаемые М. можно разделить на две группы: М. с двумя объективами (БМ-56 и др.) и М. с одним объективом (МБС-1, МБ С-2, МБС-3 и др.). Бинокулярный М. БМ-56 является наиболее простым из стереоскопических М. и состоит из двух самостоятельных оптических систем, каждая из к-рых дает отдельное изображение.

Рис. 6. Стереоскопический микроскоп МБС-1: 1 — зеркало, 2 — осветитель, 3 — окуляры насадки, 4 — микровинт, 5 — макровинт, 6 — штатив, 7 — источник питания.

Стереоскопический М. МБС-1 работает в проходящем и отраженном свете (рис. 6). Стереоскопический М. МБ С-2 имеет универсальный штатив, к-рый позволяет работать с объектами больших размеров. Стереоскопический М. МБС-3 отличается от предыдущих оптической конструкцией, в к-рой в значительной степени уменьшена сферохроматическая аберрация, исправлена кривизна изображения.

Существуют также специальный бинокулярный налобный М., предназначенный для микрохирургических операций (см. операционный микроскоп (см.).

Микроскопы сравнения состоят из двух конструктивно объединенных обычных М. с единой окулярной системой. В таком М. в двух половинах поля зрения видны изображения сразу двух объектов, что дает возможность сравнивать их по цвету, структуре, распределению элементов и т. д. М. такого типа применяют при сравнительном изучении каких-либо объектов в норме и патологии, прижизненном состоянии и после фиксации или окраски различными методами. М. сравнения используются и в судебной медицине.

Контактный микроскоп, используемый для прижизненного изучения различных биол, структур, отличается от других М. наличием особых контактных объективов, к-рые представляют собой видоизмененные иммерсионные объективы. К ним первоначально приклеивали тонкую пластинку стекла и создавали непосредственный контакт с поверхностью изучаемого объекта. В 1963 г. А. П. Грамматин предложил и рассчитал объективы, предназначенные специально для контактной микроскопии. Фокусировка в контактном М. осуществляется специальной оптической системой, т. к. объектив неподвижно прижат к объекту. В флюоресцентном контактном М. изучаемый участок объекта освещается коротковолновыми лучами через контактный объектив с помощью опак-иллюминатора с интерференционным светоделителем.

Темнопольный микроскоп, используемый в работе по методу темного поля (см. Ультрамикроскоп).

Фазово-контрастный микроскоп и его разновидность — аноптральный М. служат для получения изображений прозрачных и бесцветных объектов, не видимых при наблюдении по методу светлого поля. Обычно эти объекты не могут быть окрашены, т. к. окраска губительно действует на их структуру, локализацию хим. соединений в клеточных органеллах и т. п. (см. Фазово-контрастная микроскопия). Этот метод широко применяется в микробиологии. В клинико-диагностических лабораториях он используется для исследования мочи, нефиксированных тканей (напр., при диагностике злокачественных опухолей), нек-рых фиксированных гистол. препаратов (cм. Гистологические методы исследования).

Рис. 7. Оптическая схема фазово-контрастного микроскопа с осветителем: 1 — осветитель; 2 — апертурная диафрагма; 3 — конденсор; 4 — изучаемый объект; 4' — изображение изучаемого объекта; 5 — объектив; 6 — фазовая пластинка, на поверхности которой имеется кольцевой выступ или кольцевая канавка, так называемое фазовое кольцо (сплошными стрелками показан ход обычных лучей, пунктирными — диафрагмированных).

В фазово-контрастном М. (рис. 7) в переднем фокусе конденсора устанавливают апертурную диафрагму, отверстие к-рой имеет форму кольца. Изображение, построенное ею, образуется вблизи заднего фокуса объектива, и там же устанавливают фазовую пластинку. Она может быть установлена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но лучи света от осветителя, проходя через объект, должны полностью проходить через фазовое кольцо, к-рое значительно их ослабляет и изменяет их фазу на четверть длины волны. Лучи, даже немного отклоненные (рассеянные) в препарате, не попадают в фазовое кольцо и не претерпевают сдвига фазы. С учетом фазового сдвига лучей света в материале препарата разность фаз между отклоненными и неотклоненными лучами усиливается; в результате интерференции света в плоскости изображения лучи усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата.

Промышленность выпускает различные фазово-контрастные устройства к М. Фазово-контрастное устройство КФ-4 состоит из конденсора и набора объективов. Его можно применять с биол., поляризационными, люминесцентными и другими М. Фазово-контрастное устройство КФ-5 отличается от КФ-4 тем, что фазовые пластинки на его объективах нанесены в виде двух колец, контрастность изображения также несколько выше. Фазово-контрастное устройство МФА-2 отличается от КФ-4 размером фазовых колец и способом их нанесения.

Аноптральный Микроскоп является разновидностью фазово-контрастного М. и позволяет исследовать малоконтрастные живые объекты (простейшие, бактерии, вирусы), но дает более контрастное изображение, чем обычный фазово-контрастный микроскоп. Нежелательным при применении аноптрального М. можно считать появление в нек-рых случаях ореолов вокруг изображения объектов. Промышленностью выпускается комплект для аноптральной микроскопии КАФ-2 и др.

Интерференционный микроскоп предназначен для решения тех же задач, что и фазовоконтрастный М., однако между ними имеются и существенные различия. В интерференционном М. можно наблюдать участки объектов не только с большими, но и с малыми градиентами показателя преломления или толщины, т. е. можно изучать детали прозрачных объектов независимо от их формы и размеров, а не только их контуры, как в фазово-контрастном М.

Рис. 8. Принципиальная схема одного из способов осуществления интерференционного контраста: 1 — конденсор; 2 — диафрагма; 3 — объект; 4 — объектив; 5 — компенсатор. Стрелками показано направление хода светового луча, а и а’ — двоякопреломляющие пластинки, первая из них расщепляет исходный световой луч на два луча, а вторая соединяет их. Один из лучей, проходя через объект 3, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом), величина этого запаздывания измеряется компенсатором 5.

Принцип, лежащий в основе конструкции интерференционного М., состоит в том, что каждый луч, входящий в М., раздваивается: один из полученных лучей направляется сквозь наблюдаемую частицу объекта, а другой — мимо нее по той же или дополнительной оптической ветви М. (рис. 8). В окулярной части такого М. оба луча вновь соединяются и интерферируют между собой.

Рис. 9. Микрофотография эритроцита человека в монохроматическом свете с длиной волны 0,546 мкм. Изгиб интерференционной полосы воспроизводит в масштабе толщину эритроцита.

Интерференционный М. пригоден для изучения живых и нефиксированных тканей, он позволяет с помощью различных устройств производить измерения, на основании к-рых можно вычислить, напр., массу сухого вещества растительной: или животной клетки, концентрацию, размеры объекта, содержание белков в живых и фиксированных объектах и т. п. (рис. 9).

Промышленность выпускает большое число различных интерференционных М., предназначенных для биол., мед., металлографических и других исследований. Примером может служить интерференционный биол, микроскоп МБИН-4, предназначенный для исследования образцов в проходящем свете интерференционным методом. Он позволяет так-же измерять разности хода- лучей, возникающие при их прохождении через различные участки объекта.

Метод интерференционного контраста часто сочетают с другими методами микроскопии, напр. с наблюдением объектов в поляризованном свете, в УФ-свете и т. п., что позволяет, напр., определить содержание нуклеиновых к-т в общей сухой массе объекта.

Ультрафиолетовый и инфракрасный микроскопы предназначены для исследования объектов в ультрафиолетовых (УФ) и инфракрасных (ИК) лучах. Эти М. снабжены фотокамерами, флюоресцирующими экранами или электронно-оптическими преобразователями для фиксации изображения. Разрешающая способность УФ-микроскопов значительно выше, чем разрешающая способность обычных М., т. к. их предельное разрешение, зависящее от длины волны, ниже. Длина волны света, используемого в УФ-микроскопии, 400 — 250 нм, тогда как длина волны видимого света 700—400 нм. Однако главное преимущество УФ-микроскопов заключается в том, что частицы многих веществ, прозрачные в видимом свете, сильно поглощают УФ-излучение определенных длин волн и, следовательно, легко различимы в УФ-изображениях. Характерными спектрами поглощения в УФ-области спектра обладает ряд веществ, содержащихся в растительных и животных клетках. Такими веществами являются белки, пуриновые основания, пиримидиновые основания, ароматические аминокислоты, нек-рые липиды, витамины, тироксин и другие биологически активные соединения .

Рис. 10. Ультрафиолетовым микроскоп МУФ-6: 1 — источник питания, 2 — штатив, 3 — окуляр, 4 — объектив, 5 — предметный столик.

Исследовательский УФ-микроскоп МУФ-6 (рис. 10) предназначен для биол, исследований в проходящем и отраженном свете. Он позволяет проводить фотографирование объектов, а также фотографическую регистрацию оптической плотности и спектров поглощения участков образца при освещении их монохроматическим светом.

Микрофотометрическая ультрафиолетовая установка МУФ-5 предназначена для исследования биол, объектов в проходящем свете. На ней можно производить автоматическую запись спектров поглощения, с помощью сканирующего предметного столика записывать изменения оптической плотности вдоль выбранного направления в нужном спектральном интервале, фотографировать флюоресценцию объектов.

Рис. 11. Инфракрасный микроскоп МИК-1: 1 — источник питания, 2 — предметный столик с препаратоводителем, 3 — револьвер с объективами, 4 — бинокулярная насадка, 5 — штатив, 6 — осветитель.

Наблюдение объектов с помощью инфракрасного микроскопа также требует преобразования невидимого для глаза изображения в видимое путем его фотографирования или с помощью электронно-оптического преобразователя. Инфракрасный микроскоп, напр. МИК-1 (рис. 11), позволяет изучить внутреннюю структуру непрозрачных для видимого света объектов (напр., зоол., палеонтол., антропол, препаратов и пр.). Выпускаемый промышленностью инфракрасный микроскоп МИК-4 позволяет рассматривать объекты при свете с длиной волн от 750 до 1200 нм, в т. ч. и в поляризованном свете.

Поляризационный микроскоп позволяет наблюдать изучаемые объекты в поляризованном свете и служит для изучения препаратов, оптические свойства к-рых неоднородны, т. е. так наз. анизотропных объектов (см. поляризация (см.), сообщенная при этом свету, меняется при последующем его прохождении через препарат (или отражении от него). Это дает возможность выделить различные элементы в препарате и их ориентацию в пространстве, что особенно важно при изучении медико-биол. объектов. В поляризационном М. исследования можно производить как в проходящем, так и в отраженном свете. Узлы поляризационных М. предназначены для точных количественных измерений: окуляры имеют перекрестия, микрометрические шкалы и т. п.; вращающийся предметный столик имеет угломерный лимб.

Иногда поляризационные микроскопы снабжают «столиком Федорова» для установки объектов под различными углами к оптической оси прибора.

В биологии и медицине с помощью поляризационных М. контролируют доброкачественность продуктов питания, исследуют цитологические и гистологические препараты, структуру соединительной ткани, костей и зубов.

Рис. 12. Универсальный поляризационный микроскоп МИН-8: 1 — конденсор, 2 — предметный столик, 3 — препаратоводитель, 4 — объектив, 5 — окуляр, 6 — штатив, 7 — осветитель, 8 — макро- и микровинты

Промышленность выпускает поляризационные М. различного назначения. Примером такого М. является универсальный поляризационный микроскоп МИН-8 (рис. 12), к-рый имеет необходимое оснащение и дополнительные принадлежности для других поляризационных исследований, кроме микроскопических. Лучшими зарубежными приборами такого типа являются универсальные микроскопы «Ортолюкс-Поль» фирмы «Лейтц» (ФРГ) и «Поль» фирмы «Оптон».

Люминесцентный микроскоп. Устройство люминесцентных М. основано на нек-рых физ.-хим. законах люминесценции (см. Люминесцентная микроскопия). Высокая чувствительность люминесцентных М. используется в микробиол., иммунол., цитол, и биофизических исследованиях.

Выпускаемый промышленностью люминесцентный микроскоп МЛ-3 предназначен для наблюдения и фотографирования объектов в свете их видимой флюоресценции в отраженном свете. Люминесцентный микроскоп МЛ-2 отличается от МЛ-3 возможностью наблюдения объектов в проходящем свете. Люминесцентные устройства, используемые чаще вместе с обычными М., содержат осветитель с ртутной лампой, набор светофильтров и так наз. опак-иллюминатор для освещения препаратов сверху. В сочетании с обычными люминесцентными М. используют фотометрическую наладку ФМЭЛ-1, к-рая служит для количественного измерения интенсивности видимой флюоресценции. Микрофлюориметр МЛИ-1 применяют для исследования ультрафиолетовой и видимой флюоресценции в отраженном свете. Прибор позволяет производить количественные измерения флюоресценции, фотографирование, измерение спектров флюоресценции, возбуждения флюоресценции.

Рентгеновский микроскоп предназначен для исследования объекта в рентгеновских лучах. Фокусировка лучей в рентгеновских М. имеет свои особенности: для этого в них используются изогнутые зеркальные плоскости. В рентгеновском М. имеются также микрофокусный источник рентгеновского излучения и детекторы изображения: фотопленки или электтронно-оптические преобразователи. Рентгеновские М. этого типа имеют ряд недостатков, связанных со структурными несовершенствами монокристаллов и сложностями точной обработки зеркал, ввиду чего они не получили широкого применения.

Принцип проекционных, или «теневых», рентгеновских М. основан на методе проекции в расходящемся пучке лучей от точечного сверхмикрофокусного источника рентгеновских лучей. Такие М. имеют также камеры для микрообъекта и регистрирующего устройства. Линейное разрешение М. этого типа до 0,1 мкм.

Рентгеновские М. применяют при исследовании объектов, различные участки к-рых избирательно поглощают рентгеновские лучи, а также объектов, непрозрачных для иных лучей. Нек-рые модели рентгеновских М. оснащены преобразователями рентгеновского излучения в видимое и телевизионными устройствами.

Сканирующий микроскоп позволяет осуществлять последовательный осмотр объекта в каждой точке или его изображения фотоэлектрическим преобразователем с измерением интенсивности света, прошедшего через объект или отраженного от него. Сканирование объекта сводится к последовательному измерению коэффициента пропускания или отражения лучей света от объекта в каждой его точке и преобразованию его в электрический сигнал. Вид характеристик микроструктур, получаемых в результате обработки видеосигналов, определяется алгоритмами (см.), вводимыми в соответствующие вычислительные устройства; т. о., сканирующий М. представляет собой сочетание собственно М. и информационной сканирующей системы. Он является составной частью конструкции анализаторов и счетчиков частиц, телевизионных М., сканирующих и интегрирующих микрофотометров и т. д. Сканирующие М. используют в микробиологии, цитологии, генетике, гистологии, физиологии и других областях биологии и медицины.

Является перспективным использование сканирующих М. или конструкций, в состав к-рых они входят, в диагностических целях, для изучения строения и структуры тканей, в т. ч. и крови, выявления в них возрастных и патологических изменений, обнаружения атипичных клеток в срезах тканей и т. п. В экспериментальной медицине сканирующие М. применяют с целью контроля роста и развития тканей и клеток в культурах и т. п.

Промышленность выпускает сканирующие устройства, выполненные в виде насадок к световому микроскопу.

Системы сканирования могут быть телевизионными и механическими. Телевизионные применяют в основном для анализа геометрических и статистических характеристик и классификации микрообъектов. Механические более универсальны и точны. Они позволяют работать в заданном спектральном интервале в УФ-области спектра и часто применяются для фотометрических измерений.

Телевизионный микроскоп конструктивно сочетает в себе М. с телевизионной техникой. Телевизионные М. работают по схеме микропроекции: изображение объекта преобразуется в последовательные электрические сигналы, к-рые затем воспроизводят это изображение в увеличенном масштабе на экране кинескопа. В зависимости от способа освещения исследуемого объекта телевизионные М. подразделяют на два типа: М. с передающей трубкой и М. с бегущим пятном.

Телевизионный М. с передающей трубкой представляет собой простую комбинацию оптического М. и телевизионного канала. Изображение, даваемое М., проецируется на экран кинескопа. При этом изображение сигналов можно наблюдать и на большом экране даже при малом освещении самого объекта.

В телевизионном М. с бегущим пятном используют оптическое сканирование объекта движущимся лучом света.

Телевизионные устройства часто используют в сочетании с фазово-контрастными М. Этим достигается наибольшая контрастность изображения. Высокая яркость изображений в телевизионных М. позволяет использовать их для проведения фото- и киносъемок как неподвижных, так и движущихся объектов. Телевизионные М. можно использовать и как дистанционный прибор, т. е. сам телевизионный приемник может быть установлен на значительном расстоянии от М., что особенно важно при исследовании объектов, близость к к-рым опасна для наблюдателя (напр., радиоактивных). В телевизионном микроскопе возможно изучение объектов в УФ- и ИК-лучах; его используют также как телевизионный микроспектрофотометр. При использовании дополнительных электронных систем возможно получение цветного изображения. На основе телевизионных М. созданы автоматические счетчики микрочастиц (см. Автоанализаторы). Изображение в этом случае специальными счетными приспособлениями преобразуется в серию электрических сигналов, что позволяет просто и с большой скоростью производить подсчет числа различных частиц в препарате (эритроцитов и лейкоцитов в крови, колоний бактерий, частиц аэрозолей в воздухе, кристаллов и зерен в минералах и т. п.), а также целый комплекс других измерений.

Промышленность выпускает телевизионные Микроскопы различных типов. Ультрафиолетовый телевизионный М. амер. фирмы «Ньютроникс Рисерч» представляет собой телевизионный микроспектрофотометр. Он дает трехцветное изображение объекта, соответствующее трем выбранным длинам волн в УФ-части спектра. Такой М. позволяет производить абсорбционные измерения.

Количественный телевизионный М. «КТМ» англ. фирмы «Металз Рисерч» дает возможность измерять отдельно элементы изображения с разной освещенностью в пределах шести ступеней интенсивности, определять процент площади, занимаемой нек-рой составной частью структуры, определять среднее число частиц для расчета их среднего размера, оценивать распределение частиц по группам крупности.

Голографический микроскоп служит для построения изображений объектов голографическим методом, т. е. методом получения объемного изображения объекта, основанным на интерференции волн (см. Лазер). При использовании импульсных лазерных источников возможно получение голограмм движущихся объектов. Конструктивное сочетание голографических устройств с обычным М. позволяет располагать объект вертикально, что необходимо при исследовании, напр., клеточных суспензий. Голограмма получается с изображения, созданного объективом. Восстановленная голограмма воспроизводит изображение, к-рое наблюдают через окуляр М. Применение голографического метода является перспективным для изучения прозрачных (фазовых) объектов; его можно также использовать для получения изображений микрообъектов, содержащих медленно движущиеся области в статическом окружении (циркуляция крови, поглощение пузырьков воздуха в капиллярах и т. д.). Голографический М. нашел применение в криоскопии для изучения различных клеток в норме и при замораживании (напр., наблюдение за процессами внутриклеточной кристаллизации). В голографическом М. возможно получение разрешения ок. 1 мкм, а также черно-белых и цветных голограмм.

Голографические устройства находят все более широкое применение в качестве автоматических анализаторов микрочастиц. Распознавание микрочастиц с использованием этого метода ускоряется в десятки тысяч раз. Поиск объекта ведут одновременно по всей голограмме. Для управления работой и обработки результатов голографические установки соединяют с ЭВМ.

См. также Микроскопические методы исследования.



Библиография:

Барский И. Я., Поляков Н. И. и Якубенас В. А. Контактная микроскопия, М., 1976, библиогр.;

Бернштейн А. С., Джохадзе Ш. Р. и Перова Н. И. Фотоэлектрические измерительные микроскопы, М., 1976, библиогр.; Воронин В. В. Основы теории микроскопа, Тбилиси, 1965; Майстров Л. Е. Приборы и инструменты исторического значения, Микроскопы, М., 1974; Машинный анализ микроскопических объектов, под ред. Г. М. Франка, М., 1968; Панов В. А. и Андреев Л. Н. Оптика микроскопов, Л., 1976, библиогр.: Сканирующая техника в исследовании клеточных популяций, клеток, органоидов и макромолекул, под ред. Г. М. Франка, Пущинона-Оке, 1973; Скворцов Г. Е. и др. Микроскопы, Л., 1969, библиогр.; Федин Л. А. Микроскопы, принадлежности к ним и лупы, М., 1961, библиогр.; Чернух А. М. и др. Некоторые вопросы применения голографии в медико-биологических исследованиях, Мед. техн., № 1, с. 30, 1976, библиогр.


Ю. В. Агибалов, Н. Г. Будковская, А. Б. Цыпин.