ГРУППЫ КРОВИ

Категория :

Описание

Группы крови — нормальные иммуногенетические признаки крови, позволяющие объединять людей в определенные группы по сходству антигенов их крови. Последние получили название групповых антигенов (см.), или изоантигенов. Принадлежность человека к той или иной Группе крови является его индивидуальной биол, особенностью, к-рая начинает формироваться уже в раннем периоде эмбрионального развития и не меняется в течение всей последующей жизни. Некоторые групповые антигены (изоантигены) находятся не только в форменных элементах и плазме крови, но и в других клетках и тканях, а также в секретах: слюне, амниотической жидкости, жел.-киш. соке и др. Внутривидовая изоантигенная дифференцировка присуща не только Людям, но и животным, у которых найдены свои особые Группы крови.

Знания о Группах крови лежат в основе учения о переливании крови (см.), широко применяются в клинической практике и судебной медицине. Генетика человека и антропология не могут обойтись без использования групповых антигенов как генетических маркеров.

Имеется большая литература о связи Групп крови с различными инфекционными и неинфекционными болезнями человека. Однако этот вопрос находится еще в стадии изучения и накопления фактов.

Наука о Г. к. возникла в конце 19 в. как один из разделов общей антителах (см.), их специфичности, полностью сохраняют свое значение и при изучении изоантигенной дифференцировки организма человека.

В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто много десятков изо-антигенов. В табл. 1 представлены наиболее изученные изоантигены эритроцитов человека (об изоантигенах лейкоцитов, тромбоцитов, а также изоантигенах сывороточных белков — см. ниже).

Строма каждого эритроцита вмещает в себе большое число изоантигенов, характеризующих внутривидовые группоспецифические признаки организма людей. По-видимому, истинное число антигенов на поверхности мембран эритроцитов человека значительно превышает число уже открытых изоантигенов. Наличие или отсутствие в эритроцитах того или другого антигена, а также различные сочетания их создают большое разнообразие антигенных структур, присущих людям. Если принять во внимание даже далеко не полный набор изоантигенов, открытых в форменных элементах и в белках плазмы крови, то прямой подсчет укажет на существование многих тысяч иммунологически различимых комбинаций.

Изоантигены, находящиеся в генетической связи, объединены в группы, получившие название систем AB0, резус и др.

Содержание

Группы крови системы AB0

Группы крови системы AB0 открыты в 1900 г. К. Ландштейнером. Смешивая эритроциты одних лиц с нормальными сыворотками крови других, он обнаружил, что при одних сочетаниях сывороток и эритроцитов наблюдается гемагглютинация (см.), при других — ее нет. На основании этих факторов К. Ландштейнер пришел к заключению, что кровь различных людей неоднородна и может быть условно разделена на три группы, которые он обозначил буквами А, В и С. Вскоре после этого Декастелло и Штурли (A. Decastello, A. Sturli, 1902) нашли людей, эритроциты и сыворотки которых отличались от эритроцитов и сывороток упомянутых трех групп. Эту группу они рассматривали как отклонение от схемы Ландштейнера. Однако Я. Янский в 1907 г. установил, что эта Г. к. не исключение из схемы Ландштейнера, а самостоятельная группа, и, следовательно, все люди по иммунол, свойствам крови делятся на четыре группы.

Различия агглютинабельных свойств эритроцитов зависят от имеющихся в них определенных специфических для каждой группы веществ — агглютиногенов (см. Агглютинация), которые по предложению Дунгерна (E. Dungern) и Л. Гиршфельда (1910) обозначают буквами А и В. В соответствии с этим обозначением эритроциты одних лиц не содержат агглютиногенов А и В (I группа по Янскому, или 0 группа), эритроциты других содержат агглютиноген А (II группа крови), эритроциты третьих лиц содержат агглютиноген В (III группа крови), эритроциты четвертых содержат агглютиноген А и В (IV группа крови).

В зависимости от наличия или отсутствия в эритроцитах групповых антигенов А и В в плазме находятся нормальные (естественные) изоантитела (Гемагглютинины) по отношению к этим антигенам. У лиц группы 0 содержатся два типа групповых антител: анти-А и анти-В (альфа и бета). У лиц группы А содержится изоантитело р (анти-В), у лиц группы В — изоантитело а (анти-А) и у лиц группы АВ оба гемагглютинина отсутствуют. Соотношения между изоантигенами и изоантителами представлены в табл. 2.

Таблица 1. НЕКОТОРЫЕ СИСТЕМЫ ИЗОАНТИГЕНОВ ЭРИТРОЦИТОВ ЧЕЛОВЕКА

Название

системы

Год открытия

Антигены систем

AB0

1900

А1, А2, А3, А4, А5, А0, Az, B, 0, H

MNSs

1927

M, N, S, s, U, Мg, M1, М2, N2, Мc, Ма, Mv, Mk, Tm, Hu, He, Mia, Vw(Gr), Mur,

Hil, Vr, Ria, Sta, Mta, Cla, Nya, Sul, Sj, S2

P

1927

P1, P2, Pk

Rh

1940

D, C, c, Cw, Cx, E, e, es (VS), Ew, Du, Cu, Eu, ce, Ces (V), Ce, CE, cE, Dw, Et LW

Lutheran

1945

Lua, Lub

Lewis

1946

Lea, Leb, Lec, Led

Kell

1946

K, k, Kpa, Kpb, Jsa, Jsb

Duffy

1950

Fya, Fyb

Kidd

1951

Jka, Jkb

Diego

1955

Dia, Dib

Yt

1956

Yta,  Ytb

Ii

1956

I, i

Auberger

1961

Aua

Xg

1962

Xga

Dombrock

1965

Doa

Таблица 2. ЗАВИСИМОСТЬ МЕЖДУ ИЗОАНТИГЕНАМИ СИСТЕМЫ AB0 В ЭРИТРОЦИТАХ И ИЗОГЕМАГГЛЮТИНИНАМИ В СЫВОРОТКЕ

Обозначение группы крови

Изоантигены в эритроцитах

Изоантитела в плазме (сыворотке)

цифро

вое

бук

венное

I

0

0

альфа и бета (анти-А и анти-В)

II

А

А

бета (анти-В)

III

В

В

альфа (анти-А)

IV

АВ

А и В

0


Таблица 3. РАСПРЕДЕЛЕНИЕ ГРУПП КРОВИ СИСТЕМЫ AB0 (в %) СРЕДИ ОБСЛЕДОВАННОГО НАСЕЛЕНИЯ СССР

Город

Количество обследованных

Группы крови

Автор и год обследования

0

А

В

АВ

Москва

31 896

33,5

37,8

2.0,5

8,1

М. А. Умнова и др., 1964

Ленинград

54 447

35,02

36,85

20,23

7,9

Т. Г. Соловьева, 1964

Минск

16 470

30,8

39,2

20,5

9,5

По материалам мед. учреждений

Казань

6 445

41,67

28,16

22,52

6,88

Б. Г. Садыков и др., 1961

Принято буквенное, а не цифровое обозначение Г. к., а также полное написание формулы Г.к., учитывающее как антигены эритроцитов, так и антитела сыворотки (0αβ, Aβ, Bα, AB0). Как видно из табл. 2, группу крови характеризуют в равной мере как изоантигены, так и изоантитела. При определении Г. к. необходимо учитывать оба эти показателя, поскольку могут встречаться лица со слабовыраженными изоантигенами эритроцитов и лица, у которых изоантитела недостаточно активны или даже отсутствуют.

Дунгерн и Гиршфельд (1911) нашли, что групповой антиген А не является однородным и может быть подразделен на две подгруппы — А1 и А2 (по терминологии, предложенной К. Ландштейнером). Эритроциты подгруппы А1 хорошо агглютинируются соответствующими сыворотками, а эритроциты подгруппы А2 — слабо, и для выявления их необходимо применять высокоактивные стандартные сыворотки группы Вα й 0αβ. Эритроциты группы А1 встречаются в 88%, а группы А2 — в 12%. В дальнейшем были найдены варианты эритроцитов с еще более слабо выраженными агглютинабельными свойствами: А3, А4, А5, Az, А0 и др. С возможностью существования таких слабоагглютинирующихся вариантов эритроцитов группы А необходимо считаться в практике определения Г. к., несмотря на то, что они встречаются весьма редко. Групповой антиген

В, в отличие от антигена А, характеризуется большей однородностью. Описаны, однако, редкие варианты и этого антигена — В2, В3, Bw, Вх и др. Эритроциты, содержащие один из этих антигенов, обладали слабо выраженными агглютинабельными свойствами. Применение высокоактивных стандартных сывороток Аβ и 0αβ позволяет выявить и эти слабовыраженные агглютиногены В.

Эритроциты группы 0 характеризуются не только отсутствием в них агглютиногенов А и В, но и наличием особых специфических антигенов H и 0. Антигены H и 0 содержатся не только в эритроцитах группы 0, но и в эритроцитах подгруппы А2 и менее всего — в эритроцитах подгруппы А1 и А1В.

Если наличие антигена H в эритроцитах сомнений не вызывает, то вопрос о самостоятельности существования антигена 0 окончательно еще не решен. Согласно исследованиям Моргана и Уоткинса (W. Morgan, W. Watkins, 1948), отличительной особенностью антигена H является наличие его в биол, жидкостях секреторов групповых веществ и отсутствие — у несекреторов. Антиген 0, в отличие от антигена Н, А и В, с секретами не выделяется.

Большое значение в практике определения антигенов системы AB0, и в особенности подгрупп А1 и А2, приобрели открытые Бойдом (W. Boyd, 1947, 1949) и независимо от него Ренконеном (К. Renkonen, 1948) вещества растительного происхождения — фитогемагглютинины. Специфические в отношении групповых антигенов фитогемагглютинины называют также лектинами (см.). «Пектины чаще находят в семенах бобовых растений сем. Leguminosa. Водно-солевые экстракты из семян Dolichos biflorus и Ulex europeus могут служить идеальной комбинацией фитогемагглютининов для определения подгрупп в группах А и АВ. Лектины, полученные из семян Dolichos biflorus, реагируют с эритроцитами группы А1 и А1В и не реагируют с эритроцитами-группы А2 и А2В. Лектины, полученные из семян Ulex europeus, наоборот, реагируют с эритроцитами группы А2 и А2В. Лектины из семян Lotus tetragonolobus и Ulex europeus применяют для обнаружения антигена Н.

В семенах Sophora japonica найдены лектины (анти-В) по отношению к эритроцитам группы В.

Найдены лектины, реагирующие с антигенами других систем Г. к. Обнаружены и специфические фитопреципитины.

Своеобразный антигенно-серо л, вариант крови был обнаружен Бхенде (Y. Bhende) с соавт, в 1952 г. у жителя Бомбея, эритроциты к-рого не содержали ни одного из известных антигенов системы AB0, а в сыворотке имелись антитела анти-А, анти-В и анти-Н; этот вариант крови получил название «Bombay» (Oh). В дальнейшем вариант крови типа Bombay находили у людей и в других частях земного шара.

Антитела по отношению к групповым антигенам системы AB0 бывают нормальные, естественно возникающие в процессе формирования организма, и иммунные, проявляющиеся в результате иммунизации человека, напр. при введении иногруппной крови. Нормальные изоантитела анти-А и анти-В являются обычно иммуноглобулинами М (IgM) и более активны при пониженной (20—25 °) температуре. Иммунные групповые изоантитела чаще связаны с иммуноглобулинами G (IgG). В сыворотке могут, однако, встречаться все три класса групповых иммуноглобулинов (IgM, IgG и IgA). В молоке, слюне, мокроте часто находятся антитела секреторного типа (IgA). Ок. 90% иммуноглобулинов, обнаруживаемых в молозиве, относятся к классу IgA. Титр антител IgA в молозиве выше, чем в сыворотке. У лиц группы 0 оба типа антител (анти-A и анти-B) принадлежат обычно к одному классу иммуноглобулинов (см.). Как IgM, так и IgG групповые антитела могут обладать гемолитическими свойствами, т. е. связывать комплемент при наличии в строме эритроцитов соответствующего антигена. Напротив, антитела секреторного типа (IgA) гемолиза не вызывают, поскольку не связывают комплемент. Для агглютинации эритроцитов требуется в 50— 100 раз меньше молекул IgM антител, чем молекул IgG групповых антител.

Нормальные (естественные) групповые антитела начинают появляться у человека в первые месяцы после рождения и достигают максимального титра приблизительно к 5—10 годам. После этого титр антител держится на относительно высоком уровне в течение многих лет, а затем с возрастом происходит постепенное его снижение. Титр гемагглютининов анти-А в норме варьирует в пределах 1 : 64 — 1 : 512, а титр гемагглютининов анти-В — в пределах 1:16 — 1 : 64. В редких случаях естественные Гемагглютинины могут быть выражены слабо, что затрудняет их выявление. Такого рода случаи наблюдаются при гипогаммаглобулинемии или Гемолиз), но в невысоком титре. Гемолизины анти-А, как и соответственные им агглютинины, более активны, чем гемолизины анти-В.

У человека могут появляться и иммунные групповые антитела в результате парентерального поступления в организм несовместимых в групповом отношении антигенов. Такого рода процессы изоиммунизации могут иметь место при переливании как цельной несовместимой крови, так и отдельных ее ингредиентов: эритроцитов, лейкоцитов, плазмы (сыворотки). Чаще всего встречаются иммунные антитела анти-А, которые образуются у лиц группы крови 0 и В. Иммунные антитела анти-В встречаются реже. Введение в организм веществ животного происхождения, сходных с групповыми антигенами А и В человека, может также приводить к появлению групповых иммунных антител. Иммунные групповые антитела могут появляться и в результате изоиммунизации в период беременности в случае принадлежности плода к группе крови, несовместимой с группой крови матери. Иммунные гемолизины и Гемагглютинины могут возникать и в результате парентерального применения в леч.-проф, целях некоторых препаратов (сывороток, вакцин и др.), содержащих сходные с групповыми антигенами вещества.

Сходные с групповыми антигенами человека вещества широко распространены в природе и могут быть причиной иммунизации. Эти вещества обнаружены и у некоторых бактерий. Отсюда следует, что некоторые инфекции также могут стимулировать образование иммунных антител по отношению к эритроцитам группы А и В. Образование иммунных антител по отношению к групповым антигенам представляет не только теоретический интерес, но имеет и большое практическое значение. Лица с группой крови 0αβ считаются обычно универсальными донорами, т. е. их кровь может быть перелита лицам всех групп без исключения. Однако положение об универсальном доноре не является абсолютным, поскольку могут встречаться лица группы 0, переливание крови которых вследствие наличия в ней иммунных гемолизинов и гемагглютининов с высоким титром (1 : 200 и более) может привести к летальным исходам. Среди универсальных доноров, т. о., могут быть и «опасные» доноры, и поэтому кровь этих лиц может быть перелита только пациентам с одноименной (0) группой крови (см. Переливание крови).

Групповые антигены системы AB0, помимо эритроцитов, были найдены также в лейкоцитах и тромбоцитах. И. Л. Кричевский и Л. А. Шварцман (1927) впервые обнаружили групповые антигены А и В в фиксированных клетках различных органов {мозга, селезенки, печени, почки). Они показали, что органы людей группы крови А, как и их эритроциты, содержат антиген А, а органы людей группы крови В соответственно эритроцитам обладают антигеном

В. В дальнейшем групповые антигены были найдены почти во всех тканях человека (мышцах, коже, щитовидной железе), а также в клетках доброкачественных и злокачественных опухолей человека. Исключение составил хрусталик глаза, в к-ром групповые антигены не найдены. Антигены А и В обнаружены в сперматозоидах, жидкости спермы. Особенно богаты групповыми антигенами амниотическая жидкость, слюна, желудочный сок. Мало групповых антигенов в сыворотке крови и в моче, а в цереброспинальной жидкости они практически отсутствуют.

Секреторы и несекреторы групповых веществ. По способности выделять групповые вещества с секретами всех людей делят на две группы: секреторов (Se) и несекреторов (se). По материалам Р. М. Уринсон (1952), 76% людей являются секреторами и 24% — несекреторами групповых антигенов. Доказано существование промежуточных групп между сильными и слабыми секреторами групповых веществ. Содержание групповых антигенов в эритроцитах секреторов и несекреторов одинаково. Однако в сыворотке и в тканях органов несекреторов групповые антигены обнаруживаются в более слабой степени, чем в тканях секреторов. Способность организма выделять групповые антигены с секретами передается по наследству по доминантному типу. Дети, родители которых относятся к несекреторам групповых антигенов, также являются несекреторами. Лица, обладающие доминантным геном секреции, способны выделять с секретами групповые вещества, лица же, имеющие рецессивный ген несекреции, этой способностью не обладают.

Биохимическая природа и свойства групповых антигенов. Групповые антигены А и В крови и органов устойчивы к действию этилового спирта, эфира, хлороформа, ацетона и формалина, высокой и низкой температуры. Групповые антигены А и В в эритроцитах и в секретах связаны с различными молекулярными структурами. Групповые антигены А и В эритроцитов — это гаптенами (см.); они специфически реагируют с соответствующими антителами, но не способны вызывать продукцию антител у иммунизированных животных. Присоединение к этому гаптену белка (напр., лошадиной сыворотки) превращает групповые гликолипиды в полноценные антигены. Это дает возможность заключить, что и в нативных эритроцитах, которые являются полноценными антигенами, групповые гликолипиды связаны с белком. Очищенные групповые антигены, выделенные из кистозной жидкости яичника, содержат 85% углеводов и 15% аминокислот. Средний мол. вес этих веществ составляет 3 X X 105 — 1 х 106 дальтон. Ароматические аминокислоты присутствуют только в очень незначительных количествах; аминокислоты, содержащие серу, не обнаружены. Групповые антигены А и В эритроцитов (гликолипиды) и секретов (глико-протеины), хотя и связаны с различными молекулярными структурами, имеют идентичные антигенные детерминанты. Групповая специфичность гликопротеидов и гликолипидов определяется углеводными структурами. Небольшое число сахаров, располагающихся на концах углеводной цепи, является важной частью специфической антигенной детерминанты. Как показал хим. анализ [Уоткинс (W. Watkins), 1966], в состав антигенов А, В, Ни Lea входят одинаковые углеводные компоненты: альфа-гексоза, D-галактоза, альфа-метил-пентоза, L-фукоза, два аминосахара — N-ацетил глюкозамин и N-ацетил-D-галактозамин и N-ацетилнейра-миновая к-та. Однако формирующиеся из этих углеводов структуры (антигенные детерминанты) неодинаковы, что и определяет специфику групповых антигенов. L-фукоза играет важную роль в структуре детерминанта антигена Н, N-ацетил-D-галактозамин — в структуре детерминанта антигена А, а D-галак-тоза — в структуре детерминанта группового антигена В. Пептидные компоненты в структуре детерминантов групповых антигенов участия не принимают. Они, как предполагают, способствуют лишь строго определенному расположению в пространстве и ориентации углеводных цепей, придают им определенную жесткость структуры.

Генетический контроль биосинтеза групповых антигенов. Биосинтез групповых антигенов осуществляется под контролем соответствующих генов. Определенный порядок сахаров в цепи групповых полисахаридов создается не путем матричного механизма, как для протеинов, а возникает в результате строго координированного действия специфических гликозил-трансферазных энзимов. Согласно гипотезе Уоткинса (1966), групповые антигены, структурные детерминанты которых являются углеводами, можно рассматривать как вторичные продукты генов. Первичными же продуктами генов являются протеины — гликозилтрансферазы, катализирующие перенос сахаров от гликозильного производного нуклеозиддифосфата на углеводные цепи гликопротеинапредшественника. Серол., генетические и биохим, исследования дают основание предполагать, что гены А, В и Le контролируют гликозилтрансферазные энзимы, которые катализируют присоединение соответствующих единиц сахаров к углеводным цепям преформированной гликопротеиновой молекулы. Рецессивные аллели этих локусов функционируют как неактивные гены. Хим. природа вещества-предшественника еще в должной мере не определена. Одни исследователи считают, что общим для всех групповых антигенов-предшественников является гликопротеидное вещество, идентичное по своей специфичности полисахариду пневмококка XIV типа. На основе этого вещества строятся под влиянием генов А, В, Н, Le соответствующие антигенные детерминанты. Вещество антигена H является основной структурой, к-рая входит во все групповые антигены системы AB0. Другие исследователи [Фейзи, Кабат (Т. Feizi, E. Kabat), 1971] представили доказательства, что предшественник групповых антигенов — вещество антигена I.

Изоантигены и изоантитела системы AB0 в онтогенезе. Групповые антигены системы AB0 начинают обнаруживаться в эритроцитах человека в раннем периоде его эмбрионального развития. Групповые антигены находили в эритроцитах плода на втором месяце эмбриональной жизни. Рано сформировавшись в эритроцитах плода, групповые антигены А и В достигают наибольшей активности (чувствительности к соответствующим антителам) к трем годам жизни. Агглютинабельность эритроцитов новорожденных составляет 1/5 часть агглютинабельности эритроцитов взрослых. Достигнув максимума, титр агглютиногенов эритроцитов в течение нескольких десятков лет держится на постоянном уровне, а затем наблюдается постепенное его снижение. Присущая каждому человеку специфичность индивидуальной групповой дифференцировки сохраняется в течение всей его жизни вне зависимости от перенесенных инфекционных и неинфекционных заболеваний, а также от воздействий на организм различных физ.-хим. факторов. В течение всей индивидуальной жизни человека происходят лишь количественные изменения в титре его групповых гемагглютиногенов А и В, но не качественные. Помимо возрастных изменений, о которых говорилось выше, рядом исследователей было отмечено снижение агглютинабельности эритроцитов группы А у больных лейкозом. Предполагают, что у этих лиц имело место изменение процесса синтеза предшественников антигенов А и В.

Наследование групповых антигенов. Вскоре после открытия у людей Г. к. было отмечено, что групповые антигенно-серол. свойства крови детей находятся в строго определенной зависимости от групповой принадлежности крови их родителей. Дунгерн (E. Dungern) и Л. Гиршфельд в результате обследования семей пришли к заключению, что групповые признаки крови передаются по наследству посредством двух независимых друг от друга генов, которые они обозначили, как и соответствующие им антигены, буквами А и В. Бернштейн (F. Bernstein, 1924), основываясь на законах наследования Г. Менделя, подверг математическому анализу факты наследования групповых признаков и пришел к заключению о существовании третьего генетического признака, определяющего группу 0. Этот ген, в отличие от доминантных генов А и В, является рецессивным. Согласно теории Фурухаты (Т. Furuhata, 1927), по наследству передаются гены, определяющие развитие не только антигенов А, В и 0(H), но и гемагглютининов аир. Агглютиногены и агглютинины наследуются в коррелятивной связи в виде следующих трех генетических признаков: 0αβр, Аβ и Вα. Сами антигены А и В не являются генами, но развиваются под специфическим влиянием генов. Группа крови, как и любой наследственный признак, развивается под специфическим влиянием двух генов, из которых один происходит от матери, а другой — от отца. Если оба гена идентичны, то оплодотворенная яйцеклетка, а следовательно, и развившийся из нее организм будут гомозиготными; если гены, определяющие один и тот же признак, неодинаковы, то организм будет обладать гетерозиготными свойствами.

В соответствии с этим генетическая формула Г. к. не всегда совпадает с фенотипической. Напр., фенотипу 0 соответствует генотип 00, фенотипу А — генотип АА и АО, фенотипу В — генотип В В и ВО, фенотипу АВ — генотип АВ.

Антигены системы AB0 неодинаково часто встречаются среди различных народов. Частота, с к-рой Г. к. встречаются среди населения некоторых городов СССР, представлена на табл. 3.

Г. к. системы AB0 имеют первостепенное значение в практике переливания крови, а также при подборе совместимых пар доноров и реципиентов при пересадке органов тканей (см. внутренней среды организма (см.). Имеются гипотезы о защитной функции антигенов системы AB0 пищеварительного тракта, семенной и околоплодной жидкости.

Группа крови системы Rh

Группы крови системы Rh (Rhesus) занимают второе место по значению для мед. практики. Эта система получила название от обезьян rhesus, эритроциты которых были применены К. Ландштейнером и А. Винером (1940) для иммунизации кроликов и морских свинок, от которых были получены специфические сыворотки. С помощью этих сывороток в эритроцитах человека обнаружили антиген Rh (см. Резус-фактор). Наибольший прогресс в изучении этой системы был достигнут благодаря получению изоиммунных сывороток от многорожавших женщин. Эта одна из самых сложных систем изоантигенной дифференцировки организма человека включает в себя более двадцати изоантигенов. Помимо пяти основных антигенов R h (D, С, с, E, e), в эту систему входят также их многочисленные варианты. Одни из них характеризуются пониженной агглютинабельностью, т. е. отличаются от основных антигенов R h в количественном отношении, другие варианты имеют качественные антигенные особенности.

С изучением антигенов системы Rh в значительной мере связаны успехи общей иммунологии: открытие блокирующих и неполных антител, разработка новых методов исследования (реакция Кумбса, реакция гемагглютинации в коллоидных средах, применение энзимов в иммунол, реакциях и т.д.). Успехи в диагностике и профилактике гемолитической болезни новорожденных (см.) также достигнуты гл. обр. при изучении этой системы.

Группа крови системы MNSs

Казалось, что система групповых антигенов М и N, открытая К. Ландштейнером и Ф. Левином в 1927 г., достаточно хорошо изучена и состоит из двух основных антигенов — М и N (такое название антигенам дано условно). Дальнейшие исследования, однако, показали, что эта система не менее сложна, чем система Rh, и включает ок. 30 антигенов (табл. 1). Антигены М и N были открыты при помощи сывороток, полученных от кроликов, иммунизированных эритроцитами человека. У людей антитела анти-М и в особенности анти-N встречаются редко. На многие тысячи переливаний несовместимой в отношении этих антигенов крови были отмечены лишь единичные случаи образования изо-антител анти-М или анти-N. На основании этого групповую принадлежность донора и реципиента по системе MN в практике переливания крови обычно не учитывают. Антигены М и N могут находиться в эритроцитах вместе (MN) или каждый в отдельности (М и N). Согласно данным А. И Розановой (1947), к-рая обследовала в Москве 10 000 чел., лица группы крови М встречаются в 36%, группы N — в 16%, а группы MN — в 48% случаев. По хим. природе антигены М и N являются гликопротеидами. В структуру антигенных детерминант этих антигенов входит нейраминовая к-та. Отщепление ее от антигенов путем обработки последних нейраминидазой вирусов или бактерий приводит к инактивации антигенов М и N.

Формирование антигенов М и N происходит в раннем периоде эмбриогенеза, антигены обнаруживаются в эритроцитах эмбрионов 7—8-недельного возраста. Начиная же с 3-го мес. антигены М и N в эритроцитах эмбрионов хорошо выражены и не отличаются от антигенов эритроцитов взрослых. Антигены М и N передаются по наследству. Один признак (М или N) ребенок получает от матери, другой — от отца. Установлено, что у детей могут быть только лишь те антигены, которые имеются у родителей. При отсутствии того или другого признака у родителей дети также не могут их иметь. На основании этого система MN имеет значение в суд.-мед. практике при решении вопросов спорного отцовства, материнства и подмены детей.

В 1947 г. при помощи сыворотки, полученной от многорожавшей женщины, Уолш и Монтгомери (R. Walsh, С. Montgomery) открыли антиген S, связанный с системой MN. Несколько позднее был обнаружен в эритроцитах человека и антиген s.

Антигены S и s контролируются аллельными генами (см. Аллели). У 1% людей антигены S и s могут отсутствовать. Г. к. этих лиц обозначают символом Su. Помимо антигенов MNSs, в эритроцитах некоторых лиц находят комплексный антиген U, состоящий из компонентов антигенов S и s. Встречаются и другие многообразные варианты антигенов системы MNSs. Одни из них характеризуются пониженной агглютинабельностью, другие — имеют качественные антигенные различия. В эритроцитах людей обнаружены были также антигены (Ни, Не и др.), генетически связанные с системой MNSs.

Группы крови системы P

Одновременно с антигенами М и N К. Ландштейнер и Ф. Левин (1927) открыли в эритроцитах человека антиген Р. В зависимости от наличия или отсутствия этого антигена все люди были разделены на две группы — Р+ и P—. Долгое время считали, что система P ограничивается существованием только этих двух вариантов эритроцитов, однако дальнейшие исследования показали, что и эта система более сложна. Оказалось, что эритроциты большинства Р-отрицательных субъектов содержат антиген, кодируемый другим аллеломорфным геном этой системы. Этот антиген был назван Р2, в отличие от антигена P1, который ранее обозначали как Р+. Существуют лица, у которых оба антигена (Р1 и Р2) отсутствуют. Эритроциты этих лиц обозначают буквой р. Позднее был открыт антиген Рк и доказана генетическая связь как этого антигена, так и антигена Tja с системой Р. Считают [Сангер (R. Sanger), 1955], что антиген Tja — это комплекс антигенов Р1 и Р2. Лица группы Р1 встречаются в 79 % , группы Р2 — в 21% случаев. Лица группы Рк и р встречаются очень редко. Сыворотки для обнаружения антигенов P получают как от людей (изоантитела), так и от животных (гетероантитела). Как изо-, так и гетероантитела анти-Р относятся к категории полных антител холодового типа, поскольку вызываемая ими реакция агглютинации происходит лучше всего при t° 4—16°. Описаны антитела анти-Р, активные и при температуре тела человека. Изоантигены и изоантитела системы P имеют определенное клин, значение. Отмечены случаи ранних и поздних выкидышей, причиной которых были изоантитела анти-Р. Описано несколько случаев посттрансфузионных осложнений, связанных с несовместимостью крови донора и реципиента по системе антигенов Р.

Большой интерес представляет установленная связь между системой P и холодовой пароксизмальной гемоглобинурией Доната—Ландштейнера (см. Иммуногематология). Причины возникновения аутоантител по отношению к собственным антигенам Р1 и Р2 эритроцитов остаются пока неизвестными.

Группы крови системы Kell

Антиген Kell (Келл) был открыт Кумбсом, Мурантом, Рейсом (R. Coombs, A. Mourant, R. Race, 1946) в эритроцитах ребенка, страдающего гемолитической болезнью. Название антигену дано по фамилии семьи, у членов к-рой впервые были найдены антиген Kell (К) и антитела К. У матери были найдены антитела, реагировавшие с эритроцитами ее мужа, ребенка, и 10% образцов эритроцитов, полученных от других лиц. Этой женщине переливали кровь от ее мужа, что, по-видимому, способствовало изоиммунизации.

На основании наличия антигена К в эритроцитах или его отсутствия все люди могут быть разделены на две группы: Kell-положительных и Kell-отрицательных. Через три года после открытия антигена К было установлено, что Kell-отрицательную группу характеризует не просто отсутствие антигена К, а наличие другого антигена — к. Аллен и Льюис (F. Allen, S. Lewis, 1957) нашли сыворотки, которые позволили открыть в эритроцитах людей антигены Кра и Крв, относящиеся к системе Kell. Строуп, Мак-Илрой (М. Stroup, М. Macllroy) и сотр. (1965) показали, что антигены группы Sutter (Jsa и Jsb) также генетически связаны с этой системой. Т. о., система Kell, как известно, включает три: пары антигенов: К, к; Кра; КрD; Jsa и JsB, биосинтез которых кодируется тремя парами аллельных генов К, k; Kpb, Крв; Jsa и Jsb. Антигены системы Kell передаются по наследству по общим генетическим законам. Формирование антигенов системы Kell относится к раннему периоду эмбриогенеза. В эритроцитах новорожденных эти антигены достаточно хорошо выражены. Антигены Кик обладают сравнительно высокой иммуногенной активностью. Антитела к этим антигенам могут возникать как в процессе беременности (при отсутствии того или другого антигена у матери и наличии их у плода), так и в результате повторных переливаний крови, несовместимой в отношении антигенов Kell. Описаны многие случаи гемотрансфузионных осложнений и гемолитической болезни новорожденных, причиной которых была изоиммунизация антигеном К. Антиген К, по данным Т. М. Пискуновой (1970), к-рая обследовала 1258 жителей Москвы, был у 8,03% и отсутствовал (группа kk) у 91,97% обследованных.

Группы крови системы Duffy

Катбуш, Моллисон и Паркин (М. Cutbush, P. Mollison, D. Parkin, 1950) нашли у больного гемофилией антитела, которые реагировали с неизвестным антигеном. Последний был: назван ими антигеном Duffy (Даффи), по фамилии больного, или сокращенно Fya. Вскоре после этого был обнаружен в эритроцитах и второй антиген этой системы — Fyb. Антитела по отношению к этим антигенам получают или от больных, к-рым были сделаны многократные переливания крови, или от женщин, новорожденные дети которых страдали гемолитической болезнью. Встречаются полные и чаще неполные антитела и поэтому для их обнаружения необходимо применять реакцию Кумбса (см. Кумбса реакция) или ставить реакцию агглютинации в коллоидной среде. Г. к. Fy (a+b—) встречается в 17,2%, группа Fy (а—b+) — в 34,3% и группа Fy (a+b+)— в 48,5%. Антигены Fya и Fyb передаются по наследству как доминантные признаки. Формирование антигенов Fy происходит в раннем периоде эмбриогенеза. Антиген Fya может повлечь тяжелые пост-трансфузионные осложнения при переливании крови, если не учитывать несовместимость к этому антигену. Антиген Fyb, в отличие от антигена Fya, является менее изоантигенным. Антитела по отношению к нему встречаются реже. Антиген Fya представляет большой интерес для антропологов, поскольку у одних народов он встречается сравнительно часто, а у других отсутствует.

Группы крови системы Kidd

Антитела к антигенам системы Kidd (Кидд) открыли в 1951 г. Аллен, Даймонд и Недзеля (F. Allen, L. Diamond, В. Niedziela) у женщины по фамилии Kidd, новорожденный ребенок к-рой страдал гемолитической болезнью. Соответствующий антиген в эритроцитах был обозначен буквами Jka. Вскоре после этого был найден второй антиген этой системы — Jkb. Антигены Jka и Jkb являются продуктом функции аллельных генов. Антигены Jka и Jkb передаются по наследству по общим законам генетики. Установлено, что у детей не может быть антигенов, которые отсутствуют у их родителей. Антигены Jka и Jkb встречаются у населения приблизительно одинаково часто — в 25%, у 50% людей в эритроцитах находятся оба антигена. Антигены и антитела системы Kidd имеют определенное практическое значение. Они могут быть причиной гемолитической болезни новорожденных и посттрансфузионных осложнений при многократном переливании несовместимой по антигенам этой системы крови.

Группы крови системы Lewis

Первый антиген системы Lewis (Льюис) был открыт Мурантом (A. Mourant) в 1946 г. в эритроцитах человека при помощи сыворотки, полученной от женщины по фамилии Lewis. Этот антиген был обозначен буквами Lea. Через два года Андресен (P. Andresen, 1948) сообщил об открытии второго антигена этой системы — Leb. М. И. Потапов (1970) нашел на поверхности эритроцитов человека новый антиген системы Lewis — Led, что расширило наши представления о системе изоантигенов Lewis и дало основание предположить о существовании аллеля этого признака — Lec. Т. о., возможно существование следующих Г. к. системы Lewis: Lea, Leb, Lec, Led. Антитела анти-Le гл. обр. естественного происхождения. Однако встречаются антитела, возникшие и в результате иммунизации, напр, в процессе беременности, но это наблюдается редко. Агглютинины анти-Le относятся к антителам холодового типа, т. е. они более активны при низкой (16°) температуре. Помимо сывороток человеческого происхождения, были получены и иммунные сыворотки от кроликов, коз, кур. Грубб (R. Grubb, 1948) установил зависимость между антигенами Le и способностью организма выделять групповые вещества АВН с секретами. Антигены Leb и Led встречаются у секреторов групповых веществ АВН, а антигены Lea и Lec — у несекреторов. Помимо эритроцитов, антигены системы Lewis найдены в слюне и в сыворотке крови. Рейс и другие исследователи считают, что антигены системы Lewis являются первичными антигенами слюны и сыворотки и только вторично они проявляют себя как антигены на поверхности стромы эритроцитов. Антигены Le передаются по наследству. Формирование антигенов Le определяется не только генами Le, но и находится под непосредственным влиянием генов секреции (Se) и несекреции (se). Антигены системы Lewis неодинаково часто встречаются у разных народов и как генетические маркеры представляют несомненный интерес для антропологов. Описаны редкие случаи посттрансфузионных реакций, вызванных антителами анти-Lea и еще реже — антителами анти-Leb.

Группы крови системы Lutheran

Первый антиген этой системы открыли Каллендер (S. Callender) и Рейс (R. Race) в 1946 г. при помощи антител, полученных от больного, к-рому многократно переливалась кровь. Антиген был назван по фамилии больного Lutheran (Лютеран) и обозначен буквами Lua. Через несколько лет был открыт и второй антиген этой системы — Lub. Антигены Lua и Lub могут встречаться порознь и вместе со следующей частотой: Lua — в 0,1%, Lub — в 92,4%, Lua, Lub — в 7,5%. Агглютинины анти-Lu чаще холодового типа, т. е. оптимум их реакции лежит не выше t° 16°. Очень редко антитела анти-Lub и еще реже анти-Lua могут быть причиной посттрансфузионных реакций. Имеются сообщения о значении этих антител в происхождении гемолитической болезни новорожденных. Антигены Lu определяются уже в эритроцитах пуповинной крови. Клин, значение антигенов системы Lutheran по сравнению с другими системами относительно невелико.

Группы крови системы Diego

Изоантиген Diego (Диего) открыли в 1955 г. Лейрисс, Аренде, Сиско (М. Layrisse, Т. Arends, R. Sisco) в эритроцитах человека при помощи неполных антител, обнаруженных у матери, новорожденный ребенок к-рой страдал гемолитической болезнью. На основании наличия или отсутствия антигена Diego (Dia) индейцы Венесуэлы могли быть разделены на две группы: Di (а+) и Di (а—). В 1967 г. Томпсон, Чилдере и Хетчер (Р. Thompson, D. Childers, D. Hatcher) сообщили о нахождении ими у двух мексиканских индейцев антител анти-Dih, т. е. был открыт второй антиген этой системы. Антитела анти-Di — неполной формы и поэтому для определения Г. к. Diego применяют реакцию Кумбса. Антигены Diego передаются по наследству как доминантные признаки, к моменту рождения хорошо развиты. По материалам, собранным О. Прокопом, Уленбруком (G. Uhlenbruck) в 1966, антиген Dia обнаруживали у жителей Венесуэлы (разные племена), китайцев, японцев, но он не был найден у европейцев, американцев (белых), эскимосов (Канады), австралийцев, папуасов и индонезийцев. Неодинаковая частота, с какой антиген Diego распространен среди различных народов, представляет большой интерес для антропологов. Считают, что антигены Diego присущи народам монгольской расы.

Группы крови системы Auberger

Изоантиген Au был открыт благодаря совместным усилиям франц. и англ. ученых [Сальмон, Либерж, Сангер (С. Salmon, G. Liberge, R. Sanger) и др.] в 1961 г. Название этому антигену дано по первым буквам фамилии Auberger (Оберже) — женщины, у к-рой были обнаружены антитела. Неполные антитела возникли, по-видимому, в результате многократного переливания крови. Антиген Au найден у 81,9% обследованных жителей Парижа и Лондона. Он передается по наследству. В крови новорожденных антиген Au хорошо выражен.

Группы крови системы Dombrock

Изоантиген Do открыл Свонсон (J. Swanson) с соавт, в 1965 г. при помощи неполных антител, полученных от женщины по фамилии Dombrock (Домброк), к-рая была иммунизирована в результате переливания крови. По материалам обследования 755 жителей Северной Европы (Сангер, 1970), этот антиген встречался у 66,36% — группа Do (а+) и отсутствовал у 33,64% — группа Do (а—). Антиген Doa передается по наследству как доминантный признак; в эритроцитах новорожденных этот антиген хорошо выражен.

Группы крови системы Ii

Помимо описанных выше групповых признаков крови, в эритроцитах людей были найдены также изоантигены, из которых одни весьма широко распространены, а другие, наоборот, встречаются очень редко (напр., у членов одной семьи) и приближаются к индивидуальным антигенам. Из широко распространенных антигенов наибольшее значение имеют Г. к. системы Ii. А. Винер, Унгер* Коэн, Фельдман (L. Unger, S. Cohen, J. Feldman, 1956) получили от человека, страдавшего приобретенной гемолитической анемией, антитела холодового типа, при помощи которых удалось обнаружить в эритроцитах людей антиген, обозначенный буквой «I». Из 22 000 обследованных образцов эритроцитов только 5 не содержали этого антигена или имели его в ничтожно малом количестве. Отсутствие этого антигена обозначали буквой «i». Дальнейшие исследования, однако, показали, что антиген i реально существует. У лиц группы i находятся антитела анти-I, что свидетельствует о качественном различии между антигенами I и i. Антигены системы Ii передаются по наследству. Антитела анти-I определяются в солевой среде как агглютинины холодового типа. У лиц, страдающих приобретенной гемолитической анемией холодового типа, находят обычно аутоантитела анти-I и анти-i. Причины возникновения этих аутоантител остаются еще неизвестными. Аутоантитела анти-i чаще встречаются у больных нек-рыми формами ретикулеза, миелоидной лейкемии, инфекционного мононуклеоза. Антитела анти-I холодового типа агглютинации эритроцитов при t° 37° не дают, однако они могут сенсибилизировать эритроциты и способствовать присоединению комплемента, что и приводит к лизису эритроцитов.

Группы крови системы Yt

Итон и Мортон (В. Eaton, J. Morton) с сотр. (1956) обнаружили у человека, к-рому многократно переливали кровь, антитела, способные выявлять очень широко распространенный антиген Yta. Позднее был открыт и второй антиген этой системы — Ytb. Антиген Yta — один из наиболее широко распространенных. Он встречается у 99,8% людей. Антиген Ytb встречается в 8,1% случаев. Различают три фенотипа этой системы: Yt(a + b-), Yt (а + b +) и Yt (а — b +). Лиц фенотипа Y t (а — b —) не найдено. Антигены Yta и Ytb передаются по наследству как доминантные признаки.

Группы крови системы Xg

Все групповые изоантигены, о которых до сих пор шла речь, не зависят от пола. Они с одинаковой частотой встречаются как у мужчин, так и у женщин. Однако Манн (J. Mann) и сотр. в 1962 г. установили, что имеются групповые антигены, наследственная передача которых происходит через половую хромосому X. Вновь открытый в эритроцитах людей антиген был обозначен Xg. Антитела к этому антигену были найдены у больного, страдавшего семейной телеангиэктазией. По случаю профузных носовых кровотечений этому пациенту многократно переливали кровь, что и явилось, по-видимому, причиной его изоиммунизации. В зависимости от наличия или отсутствия в эритроцитах антигена Xg все люди могут быть разделены на две группы: Xg(a+) и Xg(a—). У мужчин антиген Xg(a+) встречается в 62,9% случаев, а у женщин — в 89,4%. Было установлено, что если оба родителя относятся к группе Xg(a—), то и у их детей — как мальчиков, так и девочек — этого антигена не содержится. Если отец группы Xg(a+), а мать группы Xg(a—), все мальчики имеют группу Xg(a—), поскольку в этих случаях в яйцеклетку поступают сперматозоиды только с хромосомой Y, определяющей мужской пол ребенка. Антиген Xg является доминантным признаком, у новорожденных он хорошо развит. Благодаря использованию группового антигена Xg открылась возможность решения вопроса о происхождении некоторых заболеваний, связанных с полом (дефекты образования некоторых энзимов, заболевания с синдромами Клайнфелтера, Тернера и др.).

Редко встречающиеся группы крови

Наряду с широко распространенными описаны и довольно редко встречающиеся антигены. Напр., антиген Bua найден Андерсоном (С. Anderson) с сотр. в 1963 г. у 1 из 1000 обследованных, а антиген Вх — Дженкинсом (W. Jenkins) с сотр. в 1961 г. у 1 из 3000 обследованных. Описаны и еще более редко встречающиеся в эритроцитах человека антигены.

Методика определения групп крови

Методика определения групп крови— выявление в эритроцитах групповых антигенов при помощи стандартных сывороток, а для групп системы AB0 также и выявление агглютининов в сыворотке исследуемой крови при помощи стандартных эритроцитов.

Для определения какого-либо одного группового антигена используются сыворотки одной специфичности. Одновременное применение сывороток разной специфичности одной и той же системы дает возможность определить полную групповую принадлежность эритроцитов по этой системе. Напр., в системе Kell использование только сыворотки анти-К или только анти-k дает возможность установить, содержат ли исследуемые эритроциты фактор К или к. Использование обеих этих сывороток позволяет решить вопрос о принадлежности исследуемых эритроцитов к одной из трех групп этой системы: КК, Кк, kk.

Стандартные сыворотки для определения Г. к. готовят из крови людей, содержащей антитела — нормальные (системы AB0) или изоиммунные (системы Rh, Kell, Duffy, Kidd, Lutheran, антигенов S и s). Для определения групповых антигенов M, N, P и Le чаще всего получают гетероиммунные сыворотки.

Техника определения зависит от характера содержащихся в сыворотке антител, которые бывают полными (нормальные сыворотки системы AB0 и гетероиммунные) или неполными (подавляющее большинство изоиммунных) и проявляют свою активность в разных средах и при разной температуре, от чего зависит необходимость использования разной техники реакции. Метод использования каждой сыворотки указывается в сопроводительной инструкции. Конечный результат реакции при использовании любой техники выявляется в виде наличия или отсутствии агглютинации эритроцитов. При определении любого антигена в реакцию обязательно включаются положительные и отрицательные контроли.

Определение групп крови системы AB0

Необходимые реактивы: а) стандартные сыворотки групп 0αβ (I), Aβ (II), Bα(III), содержащие активные агглютинины, и группы АВ (IV)— контроль; б) стандартные эритроциты групп А (II) и В (III), обладающие хорошо выраженными агглютинабельными свойствами, и группы 0(1)— контроль.

Определение Г. к. системы AB0 производится реакцией агглютинации при комнатной температуре на фарфоровой или любой другой белой пластинке со смачиваемой поверхностью.

Для определения Г. к. системы AB0 существует два способа. 1. При помощи стандартных сывороток, позволяющих установить, какие групповые агглютиногены (А или В) находятся в эритроцитах исследуемой крови, и на основании этого сделать заключение о ее групповой принадлежности. 2. Одновременно при помощи стандартных сывороток и эритроцитов— перекрестный способ. При этом также определяется наличие или отсутствие групповых агглютиногенов и, кроме того, устанавливается наличие или отсутствие групповых агглютининов (а, 3), что в итоге дает полную групповую характеристику исследуемой крови.

При определении Г. к. системы AB0 у больных и других лиц, к-рым предполагается сделать переливание крови, достаточно первого способа. В особых случаях, напр, при затруднении в трактовке результата, а также при определении группы крови AB0 у доноров, пользуются вторым способом.

При определении Г. к. и первым и вторым способом необходимо применять по два образца (двух разных серий) стандартной сыворотки каждой группы, что является одной из мер, предупреждающих ошибки.

При первом способе кровь можно брать из пальца, мочки уха или пятки (у грудных детей) непосредственно перед определением. При втором (перекрестном) способе кровь берут предварительно из пальца или вены в пробирку и исследуют после свертывания, т. е. после разделения на сыворотку и эритроциты.

Рис. 1. Определение группы крови при помощи стандартных сывороток. На пластину у предварительно написанных обозначений 0αβ (I), Aβ (II) и Bα (III) накапывается по 0,1 мл стандартной сыворотки каждого образца. Нанесенные рядом маленькие капли крови тщательно перемешиваются с сывороткой. После этого пластины покачивают и наблюдают наличие агглютинации (положительная реакция) или отсутствие ее (отрицательная реакция). В тех случаях, когда агглютинация наступила во всех каплях, делают контрольное исследование, смешивая исследуемую кровь с сывороткой группы АВ (IV), которая не содержит агглютининов и не должна вызывать агглютинации эритроцитов.

Первый способ (цветн. рис. 1). На пластинку у предварительно написанных обозначений наносят по 0,1 мл (по одной большой капле) стандартной сыворотки каждого образца так, что образуется два ряда капель в следующем порядке по горизонтали слева направо: 0αβ (I), Aβ (II) и Bα (III).

Исследуемую кровь наносят при помощи пипетки или конца стеклянной палочки по маленькой (приблизительно в 10 раз меньшей) капле рядом с каждой каплей сыворотки.

Кровь тщательно перемешивают с сывороткой сухой стеклянной (или пластмассовой) палочкой, после чего пластинку периодически покачивают, одновременно наблюдая за результатом, который выражается в наличии агглютинации (попожительная реакция) или отсутствии ее (отрицательная реакция) в каждой капле. Время наблюдения 5 мин. Для исключения неспецифичности результата по мере наступления агглютинации, но не ранее чем через 3 мин., в каждую каплю, в к-рой наступила агглютинация, добавляют одну каплю изотонического р-ра хлорида натрия и продолжают наблюдения, покачивая пластинку в течение 5 мин. В тех случаях, когда агглютинация наступила во всех каплях, делают еще контрольное исследование, смешивая исследуемую кровь с сывороткой группы АВ (IV), к-рая не содержит агглютининов и не должна вызывать агглютинации эритроцитов.

Трактовка результата. 1. Если ни в одной из капель не произошло агглютинации, это значит, что исследуемая кровь не содержит групповых агглютиногенов, т. е. принадлежит к группе О (I). 2. Если сыворотка группы 0ар (I) и В а (III) вызвала агглютинацию эритроцитов, а сыворотка группы Ар (II) дала отрицательный результат, это значит, что исследуемая кровь содержит агглютиноген А, т. е. принадлежит к группе А (II). 3. Если сыворотка группы 0αβ (I) и Аβ (II) вызывала агглютинацию эритроцитов, а сыворотка группы Вα (III) дала отрицательный результат, это значит, что исследуемая кровь содержит агглютиноген В, т. е. принадлежит к группе В (III). 4. Если сыворотка всех трех групп вызвала агглютинацию эритроцитов, но в контрольной капле с сывороткой группы AB0 (IV) реакция отрицательная, это значит, что исследуемая кровь содержит оба агглютиногена — А и В, т. е. принадлежит к группе АВ (IV).

Рис. 2. Определение групп крови перекрестным способом — одновременно при помощи стандартных сывороток и при помощи стандартных эритроцитов: на пластину у предварительно надписанных обозначений (см. рис. 1) накапывают два ряда стандартных сывороток и рядом с каждой каплей — исследуемую кровь. На нижнюю часть пластины накапывают три большие капли (в три точки), а рядом с ними маленькие капельки стандартных эритроцитов в указанном на рисунке порядке — эритроциты группы 0(I) —являются контролем, т. к. они не должны агглютинироваться никакой сывороткой. Сыворотка с эритроцитами тщательно перемешивается. После этого пластины покачивают и смотрят результат (подробное объяснение в тексте статьи).

Второй (перекрестный) способ (цветн. рис. 2). На пластинку у предварительно надписанных обозначений, так же как при первом способе, наносят два ряда стандартных сывороток группы 0αβ (I), Аβ (II), Вα(III) и рядом с каждой каплей— исследуемую кровь (эритроциты). Кроме того, на нижнюю часть пластинки наносят в три точки по одной большой капле сыворотки исследуемой крови, а рядом с ними — по одной маленькой (приблизительно в 40 раз меньшей) капле стандартных эритроцитов в следующем порядке слева направо: группа 0(I), А (II) и В(III). Эритроциты группы 0(I) являются контролем, т. к. они не должны агглютинироваться никакой сывороткой.

Во всех каплях сыворотку тщательно размешивают с эритроцитами и затем наблюдают результат при покачивании пластинки в течение 5 мин.

Трактовка результата. При перекрестном способе сначала оценивается результат, который получился в каплях со стандартной сывороткой (два верхних ряда), так же как это делается при первом способе. Затем оценивается результат, полученный в нижнем ряду, т. е. в тех каплях, в которых исследуемая сыворотка смешана со стандартными эритроцитами, и, следовательно, в ней определяются антитела. 1. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе 0 (I), а сыворотка исследуемой крови агглютинирует эритроциты группы А (II) и В (III) при отрицательной реакции с эритроцитами группы 0 (I), это указывает на наличие в исследуемой крови агглютининов а и 3, т. е. подтверждает принадлежность ее к группе 0αβ(I). 2. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе А (II), сыворотка испытуемой крови агглютинирует эритроциты группы В (III) при отрицательной реакции с эритроцитами группы 0 (I) и А (II); это указывает на наличие в исследуемой крови агглютинина 3» т. е. подтверждает принадлежность ее к группе А 3 (1Г). 3. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе В (III), а сыворотка исследуемой крови агглютинирует эритроциты группы А (II) при отрицательной реакции с эритроцитами группы 0 (I) и В (III), это указывает на наличие в исследуемой крови агглютинина а, т. е. подтверждает принадлежность ее к группе Вα (III). 4. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе АВ (IV), а сыворотка дает отрицательный результат со стандартными эритроцитами всех трех групп, это указывает на отсутствие групповых агглютининов в исследуемой крови, т. е. подтверждает принадлежность ее к группе AB0 (IV).

Определение групп крови системы MNSs

Определение антигенов М и N производится гетероиммунными сыворотками, как и группы крови системы AB0, т. е. на белой пластинке при комнатной температуре. Для исследования двух других антигенов этой системы (S и s) используют изоиммунные сыворотки, дающие наиболее четкий результат в непрямой пробе Кумбса (см. Кумбса реакция). Иногда сыворотки анти-S содержат полные антитела, в этих случаях исследование рекомендуется проводить в солевой среде, аналогично определению резус-фактора. Сопоставление результатов определения всех четырех факторов системы MNSs дает возможность установить принадлежность исследуемых эритроцитов и одной из 9 групп этой системы: MNSS, MNSs, MNss, MMSS, MMSs, MMss, NNSS, NNSs, NNss.

Определение групп крови систем Kell, Duffy, Kidd, Lutheran

Определение этих групп крови производится непрямой пробой Кумбса. Иногда высокая активность антисывороток позволяет использовать для этой цели реакцию конглютинации с применением желатины аналогично определению резус-фактора (см. Конглютинация).

Определение групп крови систем P и Lewis

Факторы системы P и Lewis определяют в солевой среде в пробирках или на плоскости, причем для более четкого выявления антигенов системы Lewis применяется предварительная обработка исследуемых эритроцитов протеолитическим ферментом (папаин, трипсин, протелин).

Определение резус-фактора

Определение резус-фактора, имеющего наряду с группами системы AB0 наиболее важное значение для клин, медицины, производится различными способами в зависимости от характера антител в стандартной сыворотке (см. Резус-фактор).

Лейкоцитарные группы

Лейкоцитарные группы — деление людей на группы, обусловленные наличием в лейкоцитах антигенов, независимых от антигенов системы AB0, Rh и др.

Лейкоциты человека имеют сложное антигенное строение. Они содержат антигены системы AB0 и MN, однозначные с теми, которые находятся в эритроцитах того же индивидуума. Это положение основывается на выраженной способности лейкоцитов вызывать образование антител соответствующей специфичности, агглютинироваться групповыми изогемагглютинирующими сыворотками с высоким титром антител, а также специфически адсорбировать иммунные антитела анти-М и анти-N. Менее выражены в лейкоцитах факторы системы Rh и других антигенов эритроцитов.

Помимо указанной антигенной дифференцировки лейкоцитов, выделены особые лейкоцитарные группы.

Впервые сведения о лейкоцитарных группах получил франц. исследователь Ж. Доссе (1954). С помощью иммунной сыворотки, полученной от лиц, к-рым производили повторные многократные переливания крови, и содержащей противолейкоцитарные антитела агглютинирующего характера (лейкоагглютинирующие антитела), был выявлен антиген лейкоцитов, встречающийся у 50% среднеевропейского населения. Этот антиген вошел в литературу под названием «Мак». В 1959 г. Руд (J. Rood) и соавт, дополнили представления о лейкоцитарных антигенах. На основании анализа результатов исследования 60 иммунных сывороток с лейкоцитами 100 доноров авторы пришли к заключению о существовании других антигенов лейкоцитов, обозначенных 2,3, а также 4а, 4b; 5а, 5b; 6a, 6b. В 1964 г. Пэйн (R. Payne) с соавт, установила антигены LA1 и LA2.

Насчитывают более 40 антигенов лейкоцитов, которые могут быть отнесены к одной из трех условно выделенных категорий: 1) антигены главного локуса, или общие антигены лейкоцитов; 2) антигены гранулоцитов; 3) антигены лимфоцитов.

Наиболее обширную группу представляют антигены главного локуса (система HLA). Они являются общими для полиморфноядерных лейкоцитов, лимфоцитов, а также тромбоцитов. Согласно рекомендациям ВОЗ, используют буквенно-цифровое обозначение HLA (Human Leucocyte Antigen) для антигенов, существование которых подтверждено в ряде лабораторий при параллельных исследованиях. В отношении недавно открытых антигенов, существование которых нуждается в дальнейшем подтверждении, используют обозначение буквой w, к-рую вставляют между буквенным обозначением локуса и цифровым — аллеля.

Система HLA — наиболее сложная из всех известных систем антигенов. Генетически H LA-антигены принадлежат к четырем сублокусам (A,B,C,D), каждый из которых объединяет аллельные антигены (см. Иммуногенетика). Наиболее изученными являются сублокусы А и В.

К первому сублокусу относятся: HLA-A1, HLA-A2, HLA-A3, HLA-A9, HLA-A10, HLA-A11, HLA-A28, HLA-A29; HLA-Aw23, HLA-Aw24, HLA-Aw25, HLA-Aw26, HLA-Aw30„ HLA-Aw31, HLA-Aw32, HLA-Aw33, HLA-Aw34, HLA-Aw36, HLA-Aw43a.

Второму сублокусу принадлежат антигены: HLA-B5, HLA-B7, HLA-B8, HLA-B12, HLA-B13, HLA-B14, HLA-B18, HLA-B27; HLA-Bw15, HLA-Bw16, HLA-Bw17, HLA-Bw21, HLA-Bw22, HLA-Bw35, HLA-Bw37, HLA-Bw38, HLA-Bw39, HLA-Bw40, HLA-Bw41, HLA-Bw42a.

К третьему сублокусу причисляют антигены HLA-Cw1, HLA-Cw2, HLA-Cw3, HLA-Cw4, HLA-Cw5.

В четвертый сублокус входят антигены HLA-Dw1, HLA-Dw2, HLA-Dw3, HLA-Dw4, HLA-Dw5, HLA-Dw6. Последние два сублокуса недостаточно изучены.

По-видимому, не все антигены HLA даже первых двух сублокусов (А и В) известны, т. к. сумма генных частот по каждому сублокусу еще не приблизилась к единице.

Деление системы HLA на сублокусы представляет большой прогресс в области изучения генетики этих антигенов. Система HLA-антигенов контролируется генами, расположенными на С6 хромосоме, по одному в сублокусе. Каждый ген контролирует синтез одного антигена. Располагая диплоидным набором хромосом (см. Хромосомный набор), теоретически каждый индивидуум должен иметь 8 антигенов, практически при тканевом типировании пока определяют четыре HLA-антигена двух сублокусов — А и В. Фенотипически может встретиться несколько комбинаций HLA-антигенов. К первому варианту можно отнести случаи, когда аллельные антигены неоднозначны в пределах первого и второго сублокусов. Человек является гетерозиготным по антигенам обоих сублокусов. Фенотипически у него обнаруживаются четыре антигена — два антигена первого сублокуса и два антигена второго сублокуса.

Второй вариант представляет ситуацию, когда человек является гомозиготным по антигенам первого или второго сублокуса. Такой человек содержит одинаковые антигены первого или второго сублокуса. Фенотипически у него обнаруживаются только три антигена: один антиген первого сублокуса и два антигена второго сублокуса или, наоборот, один антиген второго сублокуса и два антигена — первого.

Третий вариант охватывает случай, когда человек гомозиготен по обоим сублокусам. В этом случае фенотипически определяются только два антигена, по одному каждого сублокуса.

Наиболее частый — первый вариант генотипа (см.). Реже в популяции встречается второй вариант генотипа. Чрезвычайно редким является третий вариант генотипа.

Подразделение HLA-антигенов на сублокусы позволяет предсказать возможные варианты наследования этих антигенов от родителей к детям.

Генотип HLA-антигенов детей определяется ran лотипом, т. е. сцепленными антигенами, контролируемыми генами, расположенными на одной хромосоме, к-рую они получают от каждого из родителей. Поэтому половина антигенов HLA у ребенка всегда одинакова с каждым из родителей.

Учитывая сказанное, легко представить четыре возможных варианта наследования антигенов лейкоцитов системы HLA сублокусов А и В. Теоретически совпадение HLA-анти-генов среди братьев и сестер в семье составляет 25%.

Важным показателем, характеризующим каждый антиген HLA-системы, является не только его расположение на хромосоме, но и частота его встречаемости в популяции, или популяционное распределение, имеющее расовые особенности. Частота встречаемости антигена определяется генной частотой, к-рая представляет часть от общего числа исследованных особей, выраженную в долях единицы, с к-рой встречается каждый антиген. Генная частота антигенов H LA-системы является постоянной величиной для определенной этнической группы населения. По данным Ж. Доссе с соавт., генная частота для франц. населения составляет: HLA-A1—0,141, HLA-A2—0,256, HLA-A3—0,131, HLA-A9—0,247, HLA-B5—0,143, HLA-B7—0,224, HLA-B8—0,156. Сходные показатели генных частот H LA-антигенов установлены Ю. М. Зарецкой и В. С. Федруновой (1971) для русского населения. С помощью посемейных исследований различных популяционных групп земного шара удалось установить различие в частоте встречающихся гаплотипов. Особенности в частоте HLA-гаплотипов объясняются различием популяционного распределения антигенов этой системы у различных рас.

Большое значение для практической и теоретической медицины представляет определение количества возможных HLA-гаплотипов и фенотипов в смешанной популяции людей. Число возможных гаплотипов зависит от количества антигенов в каждом сублокусе и равно их произведению: число антигенов первого сублокуса (А) X число антигенов второго сублокуса (В) = количество гаплотипов, или 19 X 20 = 380.

Расчеты указывают на то, что среди примерно 400 чел. можно обнаружить только двух людей, имеющих сходство по двум H LA-антигенам сублокусов А и В.

Число возможных сочетаний антигенов, определяющих фенотип, вычисляют отдельно для каждого сублокуса. Расчет производят по формуле для определения числа сочетания по два (для гетерозиготных особей) и по одному (для гомозиготных особей) в сублокусе [Менцель и Рихтер (G. Menzel, К. Richter), n(n+1)/2 , где n — число антигенов в сублокусе.

Для первого сублокуса число антигенов равно 19, для второго —20.

Число возможных комбинаций антигенов в первом сублокусе— 190; во втором—210. Число возможных фенотипов для антигенов первого и второго сублокуса равно 190 X 210 = =39 900. Т. е. на 40 000 примерно только в одном случае можно встретить двух неродственных людей с одинаковым фенотипом по H LA-антигенам первого и второго сублокусов. Количество H LA-фенотипов значительно возрастет, когда будет известно число антигенов в сублокусе С и сублокусе D.

Антигены HLA являются универсальной системой. Они обнаружены, помимо лейкоцитов и тромбоцитов, также в клетках различных органов и тканей (коже, печени, почках, селезенке, мышцах и др.).

Выявление большинства антигенов системы HLA (локусы А,В,С) производится с помощью серол, реакций: лимфоцитотоксической пробы, РСК в отношении лимфоцитов или тромбоцитов (см. Реакция связывания комплемента). Иммунные сыворотки, преимущественно лимфоцитотоксического характера, получают от лиц, сенсибилизированных во время многократных беременностей, трансплантацией аллогенной ткани или путем искусственной иммунизации в результате повторных инъекций лейкоцитов с известным HLA-феноти-пом. Идентификация H LA-антигенов локуса D производится при помощи смешанной культуры лимфоцитов.

HLA-система имеет большое значение в клин, медицине и особенно при аллогенной трансплантации тканей, поскольку несоответствие донора и реципиента по этим антигенам сопровождается развитием реакции тканевой несовместимости (см. Несовместимость иммунологическая). В этой связи представляется вполне оправданным осуществление тканевого типирования при подборе для трансплантации донора со сходным H LA-фенотипом.

Кроме того, различие матери и плода по антигенам H LA-системы при повторных беременностях обусловливает образование антилейкоцитарных антител, которые могут приводить к выкидышу или гибели плода.

HLA-антигены имеют значение также при переливании крови, в частности лейкоцитов и тромбоцитов.

Другой системой антигенов лейкоцитов, независимой от HLA, являются антигены гранулоцитов. Эта система антигенов является тканеспецифической. Она характерна для клеток миелоидного ряда. Антигены гранулоцитов обнаружены в полиморфно-ядерных лейкоцитах, а также клетках костного мозга; они отсутствуют в эритроцитах, лимфоцитах и тромбоцитах.

Известно три гранулоцитарных антигена: NA-1, NA-2, NB-1.

Идентификация системы гранулоцитарных антигенов осуществляется с помощью изоиммунных сывороток агглютинирующего характера, которые могут быть получены от повторно беременных женщин или лиц, подвергавшихся многократным переливаниям крови.

Установлено, что антитела против антигенов гранулоцитов имеют значение при беременности, вызывая кратковременные нейтропении новорожденных. Антигены гранулоцитов играют также важную роль в развитии негемолитических трансфузионных реакций.

Третью категорию антигенов лейкоцитов составляют лимфоцитарные антигены, присущие только клеткам лимфоидной ткани. Известен один антиген из этой категории, получивший обозначение LyD1. Он встречается у людей с частотой ок. 36%. Идентификация антигена производится с помощью РСК иммунными сыворотками, полученными от сенсибилизированных лиц, подвергавшихся многократным переливаниям крови или имевших повторные беременности. Значение этой категории антигенов в трансфузиологии и трансплантологии остается малоизученным.

Группы сывороточных белков

Белки сыворотки крови имеют групповую дифференциацию. Открыты групповые свойства многих сывороточных белков крови. Исследование группы сывороточных белков находит широкое применение в судебной медицине, антропологии и, по мнению многих исследователей, имеет значение для переливания крови. Группы сывороточных белков независимы от серол, систем эритроцитов и лейкоцитов, они не связаны с полом, возрастом и передаются по наследству, что позволяет использовать их в суд.-мед. практике.

Известны группы следующих сывороточных белков: альбумина, постальбумина, альфа1-глобулина (альфа1-антитрипсина), альфа2-глобулина, бета1-глобулина, липопротеида, иммуноглобулина. Большинство групп сывороточных белков выявляется с помощью электрофореза в гидролизованном крахмале, полиакриламидном геле, агаре или на ацетат-целлюлозе, группа альфа2-глобулина (Gc) определяется методом иммуноэлектрофореза (см.), липопротеиды — методом преципитации в агаре; групповая специфичность белков, относящихся к иммуноглобулинам, определяется иммунол, методом — реакцией задержки агглютинации при помощи вспомогательной системы: Rh-положительные эритроциты, сенсибилизированные сыворотками антирезус с неполными антителами, содержащими тот или иной групповой антиген системы Gm.

Иммуноглобулины. Наибольшее значение среди групп сывороточных белков имеет генетическая неоднородность иммуноглобулинов (см.), связанная с существованием наследуемых вариантов этих белков — так наз. аллотипов, различающихся по антигенным свойствам. Она наиболее важна в практике переливания крови, судебной медицине и др.

Известны две основные системы аллотипических вариантов иммуноглобулинов: Gm и Inv. Характерные признаки антигенного строения IgG определяются системой Gm (антигенными детерминантами, локализующимися в С-концевой половине тяжелых гамма-цепей). Вторая система иммуноглобулинов Inv обусловлена антигенными детерминантами легких цепей и поэтому характеризует все классы иммуноглобулинов. Антигены системы Gm и системы Inv определяют методом задержки агглютинации.

Система Gm насчитывает более 20 антигенов (аллотипов), которые обозначаются цифрами — Gm(1), Gm(2) и т. д., либо буквами — Gm (а), Gm(x) и т. д. Система Inv имеет три антигена — Inv(1), Inv(2), Inv(3).

Отсутствие того или иного антигена обозначается знаком «—» [напр., Gm(1, 2-, 4)].

Антигены иммуноглобулиновых систем у лиц различных национальностей встречаются с неодинаковой частотой. Среди русского населения антиген Gm(1) встречается в 39,72% случаев (М. А. Умнова и др., 1963). У многих национальностей, населяющих Африку, этот антиген содержится в 100% случаев.

Изучение аллотипических вариантов иммуноглобулинов важно для клиники, генетики, антропологии и широко используется для расшифровки структуры иммуноглобулинов. В случаях агаммаглобулинемии (см.), как правило, антигены системы Gm не открываются.

При патологии, сопровождающейся глубокими белковыми сдвигами в крови, встречаются такие комбинации антигенов системы Gm, которые отсутствуют у здоровых лиц. Некоторые патол, изменения белков крови могут как бы маскировать антигены системы Gm.

Альбумины (Аl). Полиморфизм альбуминов у взрослых людей встречается крайне редко. Отмечена двойная полоса альбуминов — альбумины, обладающие большей подвижностью при электрофорезе (AlF) и более медленной подвижностью (Als ). См. также Альбумины.

Постальбумины (Ра). Различают три группы: Ра 1-1, Ра 2-1 и Ра 2-2.

альфа1-Глобулины. В области альфа1-глобулинов отмечается большой полиморфизм альфа1-антитрипсина (альфа1-АТ-глобулин), получивший обозначение системы Pi (протеаза-ингибитор). Выявлены 17 фенотипов данной системы: PiF, PiJ, PiM, Pip, Pis,Piv,Piw, Pix ,Piz и др.

При определенных условиях электрофореза альфа1-глобулины обладают большой электрофоретической подвижностью и располагаются на электрофореграмме впереди альбуминов, поэтому некоторые авторы называют их преальбуминами.

альфаг-Антитрипсин относится к гликопротеидам. Он ингибирует активность трипсина и других протеолитических ферментов. Физиол, роль альфа-1-антитрипсина не установлена, однако отмечено повышение его уровня при некоторых физиол, состояниях и патол, процессах, напр, при беременности, после приема противозачаточных средств, при воспалении. Низкую концентрацию альфа-1-антитрипсина связывают с аллелем Piz и Pis . Отмечают связь недостаточности альфа-1-антитрипсина с хрон, обтурационными легочными заболеваниями. Этими заболеваниями чаще страдают люди, гомозиготные по аллелю Pi2 или гетерозиготные по аллелям Pi2 и Pis .

С недостаточностью альфа1-антитрипсина связывают и особую форму эмфиземы легких, передающуюся по наследству.

α2-Глобулины. В этой области различают полиморфизм гаптоглобина, церулоплазмина и группоспецифического компонента.

Гаптоглобин (Нр) обладает способностью активно вступать в соединение с гемоглобином, растворенным в сыворотке, и образовывать комплекс Hb—Нр. Считают, что молекула последнего в силу больших размеров не проходит через почки и, т. о., гаптоглобин сохраняет гемоглобин в организме. В этом усматривается его основная физиол, функция (см. Гаптоглобин). Предполагают, что фермент гемальфаметилоксигеназа, расщепляющий протопорфириновое кольцо по α-метиленовому мостику, действует в основном не на гемоглобин, а на комплекс Hb-Hp, т. е. обычный обмен гемоглобина включает в себя его соединение с Hp.

Определение содержания гаптоглобина в сыворотке крови имеет значение для ранней диагностики некоторых хрон, заболеваний, для выяснения причины анемий, для выяснения прогноза и для установления эффективности их лечения.

Рис. 1. Группы гаптоглобина (Нр) и характеризующие их электрофореграммы: каждая из групп гаптоглобина имеет специфическую электрофореграмму, отличающуюся расположением, интенсивностью и количеством полос; справа обозначены соответствующие группы гаптоглобина; знаком минус обозначен катод, знаком плюс — анод; стрелка у слова «старт» обозначает место введения исследуемой сыворотки в крахмальный гель (для определения ее группы гаптоглобина).
Рис. 2. Схемы иммуноэлектрофореграмм групп системы G с: каждая из групп системы Gc-имеет специфическое расположение и форму дуги преципитации с соответствующими антигенами (обозначены цифрами) на Иммуноэлектрофорезамме; 1 — альбумин; 2 — α-гликопротеин; 3 — Gc 1; 4 — α22М; 5—Gc 2; 6 — трансферрин; знаком плюс обозначен анод; знаком минус — катод; кружочками — места нанесения сывороток.
Рис. 3. Схемы иммуноэлектрофореграмм групп трансферрина при исследовании их в крахмальном геле: каждая из групп трансферрина (черные полоски) характеризуется различным расположением на иммуноэлектрофореграмме; буквами над (под) полосками обозначены различные группы трансферрина (Tf); штриховые полосы соответствуют расположению альбумина и гаптоглобина (Hp).

В 1955 г. Смитис (О. Smithies) установил три основные группы гаптоглобинов, которые в зависимости от электрофоретической подвижности обозначают Hp 1-1, Hp 2-1 и Hp 2-2 (рис. 1). Кроме этих групп, редко встречаются другие разновидности гаптоглобина: Нр2-1 (мод), HpCa, Hp Johnson-тип, Нр Johnson Mod 1, Нр Johnson Mod 2, тип F, тип D и др. Редко у людей гаптоглобин отсутствует — агаптоглобинемия (Нр 0—0).

Группы гаптоглобина встречаются с различной частотой у лиц различных рас и национальностей. Напр., у русского населения наиболее часто встречается группа Hp 2-1—49,5%, реже группа Hp 2-2—28,6% и группа Hp 1-1—21,9%. У жителей Индии, наоборот, наиболее часто встречается группа Hp 2-2—81,7%, а группа Hp 1-1 составляет только 1,8%. Население Либерии чаще имеет группу Hp 1-1—53,3% и редко группу Hp 2-2—8,9%. У населения Европы группа Hp 1-1 встречается в 10—20% случаев, группа Hp 2-1—в 38—58%, а группа Нр 2-2—в 28—45%.

Церулоплазмин (Ср). Описан в 1961 г. Оуэном и Смитом (J. Owen, R. Smith). Различается 4 группы: СрА, СрАВ, СрВ и СрВС. Наиболее часто встречается группа СрВ. У европейцев эта группа встречается в 99%, а у негроидов — в 94%. Группа СрА у негроидов имеет место в 5,3%, а у европейцев — в 0,006% случаев.

Группоспецифический компонент (Gc) описан в 1959 г.. Гиршфельдом (J. Hirschfeld). С помощью иммуноэлектрофореза различают три основных группы — Gc 1-1, Gc 2-1 и Gc 2-2 (рис. 2). Очень редко встречаются другие группы: Gc 1-Х, Gcx-x, GcAb, Gcchi, Gc 1-Z, Gc 2-Z и др.

Группы Gc встречаются с неодинаковой частотой у различных народов. Так, среди жителей Москвы тип Gc 1-1 составляет 50,6%, Gc 2-1— 39,5% , Gc 2-2—9,8% . Имеются популяции, среди которых не встречается тип Gc 2-2. У жителей Нигерии в 82,7% случаев встречается тип Gc 1-1, а в 16,7% —тип Gc 2-1, в 0,6% — тип Gc 2-2. Индейцы (Новайо) почти все (95,92%) относятся к типу Gc 1-1. У большинства европейских народов частота типа Gc 1-1 колеблется в пределах 43,6—55,7%, Gc 2-1—в пределах 37,2—45,4%, Gc 2-2—в пределах 7,1—10,98%.

Глобулины. К ним относятся трансферрин, посттрансферрин и 3-й компонент комплемента (β1c-глобулин). Многие авторы считают, что посттрансферрин и третий компонент комплемента человека являются идентичными.

Трансферрин (Tf) легко вступает в соединение с железом. Это соединение легко распадается. Указанное свойство трансферрина обеспечивает выполнение им важной физиол, функции — перевода железа плазмы в деионизированную форму и доставку его в костный мозг, где оно используется при кроветворении.

Трансферрин имеет многочисленные группы: TfC, TfD, TfD1, TfD0, TfDchi, TfB0, TfB1, TfB2 и др. (рис. 3). Tf имеется почти у всех людей. Другие же группы встречаются редко и распределены неравномерно у различных народов.

Посттрансферрин (Pt). Его полиморфизм описали в 1969 г. Роуз и Гезерик (М. Rose, G. Geserik). Различают следующие группы посттрансферринов: А, АВ, В, ВС, С, АС. У нем. населения группы посттрансферринов встречаются со следующей частотой: А —5,31%, АВ — 31,41%, В-60,62%, ВС-0,9%, С — 0%, АС-1,72%.

Третий компонент комплемента (C'3). Описаны 7 групп C'3 . Они обозначаются либо цифрами (C'3 1—2, C'3 1—4, C'3 1—3, C'3 1 —1, C'3 2—2 и др.), либо буквами (C'3 S—S, C'3 F—S, C'3 F-F и др.). При этом 1 соответствует букве F, 2—S, 3—So, 4—S.

Липопротеиды. Различают три групповые системы, обозначенные Ag, Lp и Ld.

В системе Ag обнаружены антигены Ag(a), Ag(x), Ag(b), Ag(y), Ag(z), Ag(t) и Ag(a1). B систему Lp входят антигены Lp(a) и Lp(x). Эти антигены с различной частотой встречаются у лиц разных национальностей. Частота фактора Ag(a) у американцев (белых) — 54%, полинезийцев — 100% , микронезийцев — 95% , вьетнамцев —71%, поляков—59,9% , немцев —65%.

Различные сочетания антигенов также с неодинаковой частотой встречаются у лиц разных национальностей. Напр., группа Ag(x — у +) у шведов встречается в 64,2%, а у японцев—в 7,5%, группа Ag(x+y—) у шведов имеется в 35,8%, а у японцев — в 53,9%.

Группы крови в судебно-медицинском отношении

Исследование Г. к. широко используется в судебной медицине при решении вопросов о спорном отцовстве, материнстве (см. вещественные доказательства (см.). Определяют групповую принадлежность эритроцитов, групповые антигены сывороточных систем и групповые свойства ферментов крови.

Сопоставляется групповая принадлежность крови ребенка с групповой принадлежностью крови предполагаемых родителей. При этом исследуют свежую кровь, полученную от этих лиц. Ребенок может иметь только те групповые антигены, которые имеются хотя бы у одного родителя, и это относится к любой групповой системе. Напр., у матери группа крови А, у отца — А, у ребенка — АВ. Ребенок с такой Г. к. не мог родиться от этой пары, т. к. у данного ребенка один из родителей обязательно должен иметь в крови антиген В.

Для этих же целей исследуются антигены системы MNSs, P и др. Напр., при исследовании антигенов системы R h кровь ребенка не может содержать антигены Rho (D), rh'(C), rh"(E), hr'(e) и hr"(e), если этого антигена нет в крови хотя бы одного из родителей. То же относится к антигенам системы Duffy (Fya— Fyb), системы Kell (К—k). Чем больше групповых систем эритроцитов исследуется при решении вопросов о замене детей, спорном отцовстве и т. д., тем больше вероятности получения положительного результата. Наличие в крови ребенка группового антигена, отсутствующего в крови обоих родителей хотя бы по одной групповой системе, является несомненным признаком, позволяющим исключить предполагаемое отцовство (или материнство).

Так же решаются эти вопросы при включении в экспертизу определения групповых антигенов белков плазмы — Gm, Нр, Gc и др.

В решении этих вопросов начинают использовать определение групповых признаков лейкоцитов, а также групповой дифференциации ферментных систем крови.

Для решения вопроса о возможности происхождения крови на вещественных доказательствах от конкретного лица также определяют групповые свойства эритроцитов, сывороточных систем и групповые различия ферментов. При исследовании пятен крови часто определяют антигены следующих изосеро л. систем: AB0, MN, P, Le, Rh. Для определения Г. к. в пятнах прибегают к специальным методам исследования.

Агглютиногены изосеро л. систем могут быть обнаружены в пятнах крови путем применения соответствующих сывороток различными методами. В судебной медицине наиболее часто прибегают для этих целей к реакции абсорбции в количественной модификации, абсорбции-элюции и смешанной агглютинации.

Метод абсорбции заключается в том, что предварительно определяют титр сывороток, вводимых в реакцию. Затем сыворотки вводят в соприкосновение с материалом, взятым из пятна крови. Через нек-рое время сыворотки отсасывают от пятна крови и снова титруют. По снижению титра той или иной примененной сыворотки судят о наличии в пятне крови соответствующего антигена. Напр., пятно крови значительно понизило титр сыворотки анти-В и анти-Р, следовательно, в исследуемой крови имеются антигены В и Р.

Реакции абсорбции-элюции и смешанной агглютинации применяют для выявления групповых антигенов крови особенно в тех случаях, когда на вещественных доказательствах имеются следы крови малых размеров. Перед постановкой реакции из исследуемого пятна берут одну или несколько ниточек материала, с к-рыми и работают. При выявлении антигенов ряда изосерол. систем кровь на ниточках фиксируют метиловым спиртом. Для выявления антигенов некоторых систем фиксации не требуется: она может привести к снижению абсорбционных свойств антигена. Ниточки помещают в соответствующие сыворотки. Если в крови на ниточке имеется групповой антиген, соответствующий антителам сыворотки, то эти антитела будут абсорбированы этим антигеном. Затем антитела, оставшиеся свободными, удаляют путем отмывания материала. В фазе элюции (процесс, обратный абсорбции) ниточки помещают во взвесь эритроцитов, соответствующих примененной сыворотке. Напр., если в фазе абсорбции применялась сыворотка а, то прибавляют эритроциты группы А, если применялась сыворотка анти-Lea, то, соответственно, эритроциты, содержащие антиген Le(a) и т. д. Затем производят тепловую элюцию при t° 56°. При этой температуре антитела выходят в окружающую среду, т. к. нарушается их связь с антигенами крови. Эти антитела при комнатной температуре вызывают агглютинацию добавленных эритроцитов, что учитывается при микроскопии. Если же в исследуемом материале нет антигенов, соответствующих примененным сывороткам, то в фазе абсорбции антитела не абсорбируются и удаляются при промывании материала. В этом случае в фазе элюции не образуется свободных антител, и добавленные эритроциты не агглютинируются. Т. о. можно установить наличие в крови того или иного группового антигена.

Реакция абсорбции-элюции может быть выполнена в различных модификациях. Напр., элюцию можно производить в физиол, р-ре. Фаза элюции может выполняться на предметных стеклах либо в пробирках.

Метод смешанной агглютинации в начальных фазах выполняется, как и метод абсорбции-элюции. Различие только составляет последняя фаза. Вместо фазы элюции при методе смешанной агглютинации ниточки помещают на предметное стекло в каплю взвеси эритроцитов (эритроциты должны иметь антиген, соответствующий сыворотке, примененной в фазе абсорбции) и через нек-рое время наблюдают препарат микроскопически. Если в исследуемом объекте имеется антиген, соответствующий примененной сыворотке, то этот антиген абсорбирует антитела сыворотки, и в последней фазе добавленные эритроциты будут «прилипать» к ниточке в виде гвоздей или бус, т. к. их будут удерживать свободные валентности антител абсорбированной сыворотки. Если же в исследуемой крови нет антигена, соответствующего примененной сыворотке, то абсорбции не произойдет, и вся сыворотка будет удалена при промывании. В этом случае в последней фазе не наблюдается вышеописанная картина, а отмечается свободное распределение эритроцитов в препарате. Метод смешанной агглютинации апробирован гл. обр. в отношении системы AB0.

При исследовании системы AB0, кроме антигенов, исследуют и агглютинины методом покровного стекла. На предметные стекла помещают кусочки, вырезанные из исследуемого пятна крови, и к ним добавляют взвесь стандартных эритроцитов групп крови А, В и 0. Препараты накрывают покровными стеклами. Если в пятне есть агглютинины, то они, растворяясь, вызывают агглютинацию соответствующих эритроцитов. Напр., при наличии в пятне агглютинина а наблюдается агглютинация эритроцитов А и т. д.

Для контроля исследуется параллельно материал, взятый из вещественного доказательства вне участка, испачканного кровью.

При экспертизе сначала исследуют кровь лиц, проходящих по делу. Затем их групповую характеристику сравнивают с групповой характеристикой крови, имеющейся на вещественном доказательстве. Если кровь какого-либо лица отличается по своей групповой характеристике от крови на вещественных доказательствах, то в этом случае эксперт может категорически отвергнуть возможность происхождения крови на вещественном доказательстве от данного лица. При совпадении же групповой характеристики крови у какого-либо лица и на вещественных доказательствах эксперт не дает категорического заключения, т. к. он не может в этом случае отвергнуть возможность происхождения крови на вещественных доказательствах и от другого лица, кровь к-рого содержит те же антигены.

См. также Кровь.



Библиография: Бойд У. Основы иммунологии, пер. с англ., М., 1969; Зотиков Е. А., Манишкина Р. П. и Канделаки М. Г. Антиген новой специфичности в гранулоцитах, Докл. АН СССР, сер. биол., т. 197, № 4, с. 948, 1971, библиогр.; Косяков П. Н. Изо-антигены и изоантитела человека в норме и патологии, М., 1974, библиогр.; Руководство по применению крови и кровезаменителей, под ред. А. Н. Филатова, с. 23, Л., 1973, библиогр.; Туманов А. К, Основы судебно-медицинской экспертизы вещественных доказательств, М., 1975, библиогр.; Туманов А. К. и Томилин В. В. Наследственный полиморфизм изоантигенов и ферментов крови в норме и патологии человека, М., 1969, библиогр.; Умнова М. А. и Уринсон Р. М. О разновидностях резус-фактора и их распределении среди населения Москвы, Вопр, антропол., в. 4, с. 71, 1960, библиогр.; Унифицированные методы клинических лабораторных исследований, под ред. В. В. Меньшикова, в. 4, с. 127, М. 1972, библиогр.; Blood group immunology and transfusion techniques, ed. by J. W. Lockyer, Oxford, 1975; Blood and tissue antigens, ed. by D. Aminoff, p. 17, 187, 265, N. Y.— L., 1970, bibliogr.; Boorman K.E. a. Dodd B.E. An introduction to blood group serology, L., 1970; Fagerhol M. K.a. BraendM. Serum prealbumin, polymorphism in man, Science, v. 149, p. 986, 1965; Giblett E. R. Genetic markers in human blood, Oxford — Edinburgh, 1969, bibliogr.; Histocompatibility testing, ed. by E. S. Curtoni a. o., p. 149, Copenhagen, 1967, bibliogr.; Histocompatibility testing, ed. by P. I. Terasaki, p. 53, 319, Copenhagen, 1970, bibliogr.; Klein H. Serumgruppe Pa/Gc (Postalbumin — group specific components), Dtsch. Z. ges. gerichtl. Med., Bd 54, S. 16, 1963/1964; Landsteiner K. t)ber Agglutinationserscheinungen normalen menschlichen Blutes, Wien. klin. Wschr., S. 1132, 1901; Landsteiner K. a. Levine P. A new agglutinable factor differentiating individual human bloods, Proc. Soc. exp. Biol. (N. Y.), v. 24, p. 600, 1927; Landsteiner K. a. Wiener A. S. Agglutinable factor in human blood recognized by immune sera for rhesus blood, ibid., v. 43, p. 223, 1940; Morgan W. T. J. Human blood-group specific substances, в кн.: Immunchemie, ed. by O. Westhphal, В. a. o., p. 73, 1965, bibliogr.; Owen J. A. a. Smith H. Detection of ceruloplasmin after zone electrophoresis, Clin. chim. Acta, v. 6, p. 441, 1961; Payne R. a. o. A new leukocyte isoantigen system in man, Cold Spr. Harb. Symp. quant. Biol., v. 29, p. 285, 1964, bibliogr.; Procop O. u. Uhlenbruck G. Lehrbuch der menschlichen Blut-und Serumgruppen, Lpz., 1966, Bibliogr.; Race R. R. a. Sanger R. Blood groups in man, Oxford—Edinburgh, 1968; Shulman N. R. a. o. Complement fixing isoantibodies against antigens common to platelets and leukocytes, Trans. Ass. Amer. Phycns, v. 75, p. 89, 1962; van der Weerdt Ch. M. a. Lalezari P. Another Example of isoimmune neonatal neutropenia due to anti-Nal, Vox Sang., v. 22, p. 438, 1972, bibliogr.


П. H. Косяков; E. А. Зотиков (лейкоцитарные группы), А. К. Туманов (суд. мед.), М. А. Умнова (мет. иссл.).