ГЕНЕТИЧЕСКИЙ КОД

Категория :

Описание

ГЕНЕТИЧЕСКИЙ КОД (греч, genetikos относящийся к происхождению; син.: код, биологический код, аминокислотный код, белковый код, код нуклеиновых к-т) — система записи наследственной информации в молекулах нуклеиновых кислот животных, растений, бактерий и вирусов чередованием последовательности нуклеотидов.

Схема передачи наследственной информации (сплошными стрелками обозначены пути передачи информации): на молекуле ДНК осуществляется построение трех типов РНК: рРНК рибосомной (растворимой), иРНК — информационной, тРНК— транспортной, участвующих в синтезе белка и белковых компонентов прочих веществ клетки (пунктирными стрелками показано участие отдельных компонентов клетки в регуляции передачи информации); в процессе размножения образуется копия ДНК (ДНК1), для которой передача наследственной информации и ее регуляция идентичны данной схеме.

Генетическая информация (рис.) из клетки в клетку, из поколения в поколение, за исключением РНК-содержащих вирусов, передается путем редупликации молекул ДНК (см. Трансляция).

Поскольку в составе ДНК или РНК представлено только по 4 разных азотистых основания [в ДНК — аденин (А), тимин (Т), гуанин (Г), цитозин (Ц); в РНК — аденин (А), урацил (У), цитозин (Ц), гуанин (Г)], последовательность которых определяет последовательность 20 аминокислот в составе белка, возникает проблема Г. к., т. е. проблема перевода 4-буквенного алфавита нуклеиновых к-т в 20-буквенный алфавит полипептидов.

Впервые идея матричного синтеза белковых молекул с правильным предсказанием свойств гипотетической матрицы была сформулирована Н. К. Кольцовым в 1928 г. В 1944 г. Эйвери (О. Avery) с соавт, установил, что за передачу наследственных признаков при трансформации у пневмококков ответственны молекулы ДНК. В 1948 г. Чаргафф (E. Chargaff) показал, что во всех молекулах ДНК имеет место количественное равенство соответствующих нуклеотидов (А-T, Г-Ц). В 1953 г. Ф. Крик, Дж. Уотсон и Уилкинс (М. H. F. Wilkins), исходя из этого правила и данных рентгеноструктурного анализа (см.), пришли к выводу, что молекул а ДНК представляет собой двойную спираль, состоящую из двух полинуклеотидных нитей, соединенных между собой водородными связями. Причем против А одной цепи во второй может находиться только Т, против Г — только Ц. Эта комплементарность приводит к тому, что последовательность нуклеотидов одной цепи однозначно определяет последовательность другой. Второй существенный вывод, вытекающий из этой модели,— молекула ДНК способна к самовоспроизведению.

В 1954 г. Гамов (G. Gamow) сформулировал проблему Г. к. в ее современном виде. В 1957 г. Ф. Крик высказал Гипотезу адаптера, предположив, что аминокислоты взаимодействуют с нуклеиновой к-той не непосредственно, а через посредников (теперь известных под названием тРНК). В ближайшие после этого годы все принципиальные звенья общей схемы передачи генетической информации, вначале гипотетичные, были подтверждены экспериментально. В 1957 г. были открыты иРНК [А. С. Спирин, А. Н. Белозерский с соавт.; Фолькин и Астрахан (E. Volkin, L. Astrachan)] и тРНК [Хоугленд (М. В. Hoagland)]; в 1960 г. синтезирована ДНК вне клетки с использованием в качестве матрицы существующих макромолекул ДНК (А. Корнберг) и открыт ДНК-зависимый синтез РНК [Вейсс (S. В. Weiss) с соавт.]. В 1961 г. была создана бесклеточная система, в к-рой в присутствии естественной РНК или синтетических полирибонуклеотидов осуществлялся синтез белковоподобных веществ [М. Ниренберг и Маттеи (J. H. Matthaei)]. Проблема познания Г. к. состояла из исследования общих свойств кода и собственно его расшифровки, т. е. выяснения, какие комбинации нуклеотидов (кодоны) кодируют определенные аминокислоты.

Общие свойства кода были выяснены независимо от его расшифровки и в основном до нее путем анализа молекулярных закономерностей образования мутаций (Ф. Крик и соавт., 1961; Н. В. Лучник, 1963). Они сводятся к следующему:

1. Код универсален, т. е. идентичен, по крайней мере в основном, для всех живых существ.

2. Код триплетен, т. е. каждая аминокислота кодируется тройкой нуклеотидов.

3. Код неперекрывающийся, т. е. данный нуклеотид не может входить в состав более чем одного кодона.

4. Код вырожден, т. е. одна аминокислота может кодироваться несколькими триплетами.

5. Информация о первичной структуре белка считывается с иРНК последовательно, начиная с фиксированной точки.

6. Большинство возможных триплетов имеет «смысл», т. е. кодирует аминокислоты.

7. Из трех «букв» кодона преимущественное значение имеют лишь две (облигатные), третья же (факультативная) несет значительно меньшую информацию.

Прямая расшифровка кода состояла бы в сравнении последовательности нуклеотидов в структурном гене (или синтезированной на нем иРНК) с последовательностью аминокислот в соответствующем белке. Однако такой путь пока технически невозможен. Были применены два других пути: синтез белка в бесклеточной системе с использованием в качестве матрицы искусственных полирибонуклеотидов известного состава и анализ молекулярных закономерностей образования мутаций (см.). Первый принес положительные результаты раньше и исторически сыграл в расшифровке Г. к. большую роль.

В 1961 г. М. Ниренберг и Маттеи применили в качестве матрицы гомо-полимер — синтетическую полиуридиловую к-ту (т. е. искусственную РНК состава УУУУ...) и получили полифенилаланин. Из этого следовало, что кодон фенилаланина состоит из нескольких У, т. е. в случае триплетного кода расшифровывается как УУУ. Позже наряду с гомополимерами были использованы полирибонуклеотиды, состоявшие из разных нуклеотидов. При этом был известен только состав полимеров, расположение же нуклеотидов в них было статистическим, поэтому и анализ результатов был статистическим и давал косвенные выводы. Довольно быстро удалось найти хотя бы по одному триплету для всех 20 аминокислот. Выяснилось, что присутствие органических растворителей, изменение pH или температуры, некоторые катионы и особенно антибиотики делают код неоднозначным: те же кодоны начинают стимулировать включение других аминокислот, в некоторых случаях один кодон начинал кодировать до четырех разных аминокислот. Стрептомицин влиял на считывание информации как в бесклеточных системах, так и in vivo, причем был эффективен только на стрептомицинчувствительных штаммах бактерий. У стрептомицинзависимых штаммов он «исправлял» считывание с кодонов, изменившихся в результате мутации. Подобные результаты давали основание сомневаться в правильности расшифровки Г. к. с помощью бесклеточной системы; требовалось подтверждение, и в первую очередь данными in vivo.

Основные данные о Г. к. in vivo получены при анализе аминокислотного состава белков у организмов, обработанных мутагенами (см.) с известным механизмом действия, напр, азотистой к-той, к-рая вызывает в молекуле ДНК замену Ц на У и А на Г. Полезную информацию дают также анализ мутаций, вызванных неспецифическими мутагенами, сравнение различий в первичной структуре родственных белков у разных видов, корреляция между составом ДНК и белков и т. п.

Расшифровка Г. к. на основании данных in vivo и in vitro дала совпадающие результаты. Позже были разработаны три других метода расшифровки кода в бесклеточных системах: связывание аминоацил-тРНК (т. е. тРНК с присоединенной активированной аминокислотой) тринуклеотидами известного состава (М. Ниренберг и соавт., 1965), связывание аминоацил-тРНК полинуклеотидами, начинающимися с определенного триплета (Маттеи с соавт., 1966), и использование в качестве иРНК полимеров, в которых известен не только состав, но и порядок нуклеотидов (X. Корана и соавт., 1965). Все три метода дополняют друг друга, а результаты находятся в соответствии с данными, полученными в опытах in vivo.

В 70-х гг. 20 в. появились методы особенно надежной проверки результатов расшифровки Г. к. Известно, что мутации, возникающие под действием профлавина, состоят в выпадении или вставке отдельных нуклеотидов, что приводит к сдвигу рамки считывания. У фага Т4 был вызван профлавином ряд мутаций, при которых изменился состав лизоцима. Этот состав был проанализирован и сопоставлен с теми кодонами, которые должны были получиться при сдвиге рамки считывания. Получилось полное соответствие. Дополнительно этот метод позволил установить, какие именно триплеты вырожденного кода кодируют каждую из аминокислот. В 1970 г. Адамсу (J. М. Adams) с сотрудниками удалось провести частичную расшифровку Г. к. прямым методом: у фага R17 определили последовательность оснований во фрагменте длиной в 57 нуклеотидов и сравнили с аминокислотной последовательностью белка его оболочки. Результаты полностью совпали с полученными менее прямыми методами. Т. о., код расшифрован полностью и верно.

Результаты расшифровки сведены в таблицу. В ней указан состав кодонов и РНК. Состав антикодонов тРНК комплементарен кодонам иРНК, т. е. вместо У в них находится А, вместо А — У, вместо Ц — Г и вместо Г — Ц, и соответствует кодонам структурного гена (той нити ДНК, с к-рой считывается информация) с той лишь разницей, что место тимина занимает урацил. Из 64 триплетов, которые могут быть образованы сочетанием 4 нуклеотидов, 61 имеет «смысл», т. е. кодирует аминокислоты, а 3 являются «нонсенсами» (лишенными смысла). Между составом триплетов и их смыслом имеется довольно четкая зависимость, к-рая была обнаружена еще при анализе общих свойств кода. В ряде случаев триплеты, кодирующие определенную аминокислоту (напр., пролин, аланин), характеризуются тем, что два первых нуклеотида (облигатные) у них одинаковы, а третий (факультативный) может быть любым. В других случаях (при кодировании, напр., аспарагина, глутамина) один и тот же смысл имеют два сходных триплета, у которых совпадают два первых нуклеотида, а на месте третьего стоит любой пурин или любой пиримидин.

Нонсенс-кодоны, 2 из которых имеют специальные названия, соответствующие обозначению фаговых мутантов (УАА-охра, УАГ-амбер, УГА-опал), хотя и не кодируют каких-либо аминокислот, но имеют большое значение при считывании информации, кодируя конец полипептидной цепи.

Считывание информации происходит в направлении от 51 -> 31 - к концу нуклеотидной цепи (см. Дезоксирибонуклеиновые кислоты). При этом синтез белка идет от аминокислоты со свободной аминогруппой к аминокислоте со свободной карбоксильной группой. Начало синтеза кодируется триплетами АУГ и ГУГ, которые в этом случае включают специфичную стартовую аминоацил-тРНК, а именно N-формилметио-нил-тРНК. Эти же триплеты при локализации внутри цепи кодируют соответственно метионин и валин. Неоднозначность снимается тем, что началу считывания предшествует нонсенс. Есть данные, говорящие в пользу того, что граница между участками иРНК, кодирующими разные белки, состоит более чем из двух триплетов и что в этих местах меняется вторичная структура РНК; этот вопрос находится в стадии исследования. Если нонсенс-кодон возникает внутри структурного гена, то соответствующий белок строится только до места расположения этого кодона.

Открытие и расшифровка генетического кода — выдающееся достижение молекулярной биологии — оказало влияние на все биол, науки, положив в ряде случаев начало развитию специальных крупных разделов (см. Молекулярная генетика). Эффект открытия Г. к. и связанных с ним исследований сравнивают с тем эффектом, который оказала на биол, науки теория Дарвина.

Универсальность Г. к. является прямым доказательством универсальности основных молекулярных механизмов жизни у всех представителей органического мира. Между тем большие различия в функциях генетического аппарата и его строении при переходе от прокариотов к эукариотам и от одноклеточных к многоклеточным, вероятно, связаны и с молекулярными различиями, исследование которых — одна из задач будущего. Поскольку исследования Г. к.— дело лишь последних лет, значение полученных результатов для практической медицины носит лишь Косвенный характер, позволяя пока понять природу заболеваний, механизм действия возбудителей болезней и лекарственных веществ. Однако открытие таких явлений, как генная инженерия (см.).


Таблица. ГЕНЕТИЧЕСКИЙ КОД

Первый нуклеотид кодона

Второй нуклеотид кодона

Третий , нуклеотид кодона

У

Ц

А

Г

У

Урацил

УУУ

Фенилаланин

УЦУ

Серин

УАУ

Тирозин

УГУ

Цистеин

У

УУЦ

УЦЦ

УАЦ

УГЦ

ц

УУА

Лейцин

УЦА

УАА*

J Нонсенс

УГА*

Нонсенс

А

УУГ

УЦГ

УАГ*

УГГ

Триптофан

Г

Ц

Цитозин

ЦУУ

Лейцин

ЦЦУ

Пролин

ЦАУ

Гистидин

ЦГУ

Аргинин

У

ЦУЦ

ЦЦЦ

ЦАЦ J

ЦГЦ

ц

ЦУА

ЦЦА

ЦАА

Глутаминовая кислота

ЦГА

А

ЦУГ

ЦЦГ

ЦАГ

ЦГГ

Г

А

Аденин

АУУ

Изолейцин

АЦУ

Треонин

ААУ

Аспарагиновая

кислота

АГУ

Серин

У

АУЦ

АЦЦ

ААЦ

АГЦ

Ц

АУА

АЦА

ААА

Лизин

АГА

Аргинин

А

АУГ**

Метионин

АЦГ

ААГ

АГГ

Г

Г

Гуанин

ГУУ

Валин

ГЦУ

Аланин

ГАУ

Аспарагин

ГГУ

Глицин

У

ГУЦ

ГЦЦ

ГАЦ

ГГЦ

ц

ГУА

ГЦА

ГАА

Глутамин

ГГА

А

ГУГ**

Валин

ГЦГ

ГАГ

ГГГ

Г

* Кодирует конец цепи.

** Кодирует также начало цепи.



Библиография: Ичас М. Биологический код, пер. с англ., М., 1971; Лучник Н.Б. Биофизика цитогенетических поражений и генетический код, Л., 1968; Молекулярная генетика, пер. с англ., под ред. А. Н. Белозерского, ч. 1, М., 1964; Нуклеиновые кислоты, пер. с англ., под ред. А. Н. Белозерского, М., 1965; Уотсон Дж. Д. Молекулярная биология гена, пер. с англ., М., 1967; Физиологическая генетика, под ред. М. Е. Лобашева С. Г., Инге-Вечтомо-ва, Л., 1976, библиогр.; Desoxyribonuc-leins&ure, Schlttssel des Lebens, hrsg. v„ E. Geissler, B., 1972; The genetic code, Gold Spr. Harb. Symp. quant. Biol., v. 31, 1966; W o e s e C. R. The genetic code, N. Y. a. o., 1967.

H. B. Лучник.