ГЕНЕТИЧЕСКИЙ АНАЛИЗ

Категория :

Описание

Генетический анализ (греч. genetikos относящийся к происхождению; analysis разложение, расчленение) — совокупность методов изучения наследственных свойств организмов. Анализ характера наследования признаков в ряду поколений организмов позволяет получить данные о составе, строении и функционировании наследственного аппарата клеток.

С помощью Генетического анализа решаются два основных типа задач: 1) анализ природы наблюдаемого наследственного различия в признаках между двумя особями (группами особей, популяциями, породами, видами), выявление числа лежащих в основе данного различия генов, изучение свойств этих генов, их сцепления с другими генами, их локализация на хромосомной карте; 2) возможно полное описание генотипа особи (популяции, вида).

Первым и обязательным этапом Генетического анализа является выяснение природы (наследственная или ненаследственная) выбранного для Г. а. признака. В генетике животных, растений и микроорганизмов этот вопрос решается путем планомерного близко-родственного разведения (см. Инбридинг) или вегетативного размножения анализируемых организмов в ряде поколений. В генетике человека, где планомерное скрещивание невозможно, наследственная природа интересующего признака доказывается его семейной приуроченностью, а также высокой степенью совпадения у монозиготных близнецов (см. Близнецовый метод). Доказать наследственную природу исследуемого признака, или, точнее, определить долю наследственного компонента в его возникновении бывает довольно трудно. Это обусловлено прежде всего тем, что связь между генами и контролируемыми ими признаками зависит в большинстве случаев от совокупного влияния генотипической, внутренней и окружающей среды организма. Другим фактором, влияющим на надежность заключения о наследственной природе исследуемого признака, является чувствительность метода, с помощью к-рого данный признак изучается, т. к. диапазон наследственных различий простирается от ультраструктурных и мелких биохимических изменений в отдельных компонентах клеток до макроморфол. и физиологической особенностей организмов. Поэтому в Г. а. используют методы различных биол, и мед. дисциплин. Общим для Г. а. любых признаков является изучение закономерностей их проявления в потомстве различающихся по исследуемым признакам форм, т. е. гибридологический анализ.

С установления Г. Менделем в 1865 г. количественных закономерностей наследования признаков (см. Мутационный анализ), позволяющими исследовать тонкую структуру генов. Г. а. в зависимости от задач исследования может быть проведен на молекулярном, клеточном, онтогенетическом и популяционном уровне.

Г. а. на молекулярном уровне стал возможным, во-первых, благодаря включению в число объектов Г. а. микроорганизмов с их особыми типами рекомбинационных процессов и, во-вторых, благодаря тому, что современные биохим, методы позволяют детально изучать не только качественный и количественный состав, но и последовательность мономеров в белках и нуклеиновых к-тах.

Генетический анализ на клеточном уровне проводится в том случае, когда соответствующие наследственные признаки проявляются в отдельных клетках. Типичным примером может служить тетрадный анализ у высших растений, грибов и водорослей, когда продукты распределения гомологичных хромосом в мейозе отдельных мейоцитов (пыльца или споры) могут быть идентифицированы как по происхождению от общего мейоцита, так и по сопутствующим морфол., биохим, или иным признакам. Важное значение имеет и цитогенетический анализ, при к-ром исследуемым наследственным признаком является строение Хромосомная карта). Обусловленность многих наследственных болезней человека нарушением не самих генов, а их числа и расположения в хромосомах показывает актуальность развития цитогенетического анализа. Г. а. на клеточном уровне может быть осуществлен и в культурах соматических клеток, для которых разработаны приемы эффективной гибридизации, без чего невозможен анализ закономерностей передачи клеточных признаков дочерним клеткам. В генетике человека гибридизация соматических клеток в культуре должна стать ценным приемом при анализе наследования признаков, прежде всего биохимических и иммунологических (см. Генетика соматических клеток),

Г. а. на онтогенетическом (организменном) уровне основан на опытах, позволяющих узнавать о генах и их функционировании в клетках по макроморфо л. признакам многоклеточных животных и растительных организмов. В этом случае, в отличие от Г. а. на молекулярном и клеточном уровне, предметом наблюдений являются не непосредственные продукты функционирования генов внутри клеток, а конечные фенотипы, т. е. результат комплексного взаимодействия всего генотипа с совокупностью факторов внутренней и окружающей среды. Тем не менее практически Г. а. на организменном уровне имеет наибольшее значение.

Г. а. на популяционном уровне основан на том, что реплицирующиеся гены в зависимости от доминантности или рецессивности, участия в рекомбинации, а также неодинаковой адаптивной ценности разных аллелей (см.) распространены в популяциях с разными частотами, соотношение которых можно исследовать как теоретически, так и фактически. Сопоставление эмпирических генных частот с ожидаемыми на основании разных типов наследования позволяет делать обоснованный выбор между разными теоретическими возможностями. К Г. а. на популяционном уровне приходится обращаться особенно часто в исследованиях по генетике человека и мед. генетике в связи с невозможностью проведения планомерных скрещиваний.

Методы Г. а. на всех уровнях, от молекулярного до популяционного, являются взаимодополняющими, и лишь их комплекс позволяет охватить в целом как строение, так и функционирование генотипа (см.).

Генотип высших организмов состоит, как правило, из двух гаплоидных наборов хромосом — материнского и отцовского происхождения. В свою очередь каждая из хромосом генома (см.) состоит из последовательностей генетических локусов, которые могут быть заняты разными аллелями. В зависимости от того, какая из сторон организации генотипа изучается, различают следующие методы Г. а.: геномный, хромосомный, мутационный (генный) и анализ тонкой структуры гена.

Цель геномного анализа — установить, из какого числа геномов составлен генотип и «комплектен» ли каждый из геномов по числу хромосом. У высших организмов возможно как отклонение числа геномов от двух, так и утеря или, наоборот, наличие в избыточном числе отдельных хромосом. Большинство из известных числовых мутаций хромосом у человека лежит в основе тяжелых форм наследственной патологии (синдромы Тернера, Клайнфелтера, болезнь Дауна, спонтанные аборты и др.), что и определяет актуальность геномного анализа в мед. генетике.

Цель хромосомного анализа — выявление структурных (внутри- и межхромосомных) перестроек без изменения числа хромосом или мутирования входящих в их состав генов. Структурные перестройки хромосом могут препятствовать нормальному клеточному делению, особенно делению созревания; кроме того, отдельные перестройки могут обладать самостоятельным, иногда патол, проявлением (см. Хромосомные болезни).

Цель мутационного, или генного, анализа — изучение возможных аллельных состояний генов, а также закономерностей их переходов из одного состояния в другое как спонтанно, так и под влиянием различных средовых мутагенных факторов (см. Мутагенез). Изучение внутригенных межаллельных взаимодействий позволило выявить сложную структуру генетических локусов высших организмов и показать, что «классические» гены — структуры более высокого порядка, чем те нуклеотидные последовательности, к к-рым непосредственно приложим принцип «один ген — одна полипептидная цепь» (см. Биохимическая генетика).

Кроме генотипа, представленного хромосомами клеточных ядер, носителями наследственной информации от клетки к клетке могут служить также некоторые внеядерные (цитоплазматические) структуры, отличающиеся достаточной стабильностью и способные к редупликации и транскрипционной функции. Нехромосомная, цитоплазматическая наследственность (напр., митохондриальная наследственность у разных организмов, пластидная наследственность у растений и др.) составляет в механизмах наследственности лишь небольшую часть, предназначена для выполнения узкоспециализированных функций и, наконец, не вполне автономна — частично находится под контролем ядерных генов (см. Наследственность цитоплазматическая).

Таким образом, Г. а. распространяется на все уровни организации живой материи, а также на ее наследственную основу — генотип. Г. а. является основным содержанием исследований в любой отрасли генетики, в т. ч. генетики человека и мед. генетики. Без Г. а. невозможно решение таких важных проблем мед. генетики, как гетерогенность наследственных болезней, наследственный полиморфизм, ранняя диагностика наследственных болезней, их рациональная профилактика, оценка риска (возможности появления в семье больного) и, наконец, патогенетическая терапия.

По мере совершенствования методов Генетического анализа открываются возможности и «синтеза» новых генотипов или их элементов.

В перспективе методы генетического синтеза, основанные на детальном количественном и качественном анализе генотипа, могут стать достоянием медицины при лечении наследственных болезней человека (см. Генотерапия).


Библиография: Дубинин Н. П. Общая генетика, М., 1976, библиогр.; Лобашев М. Е. Принципы генетического анализа, в кн.: Актуальн, вопр. совр, генетики, под ред. С. И. Алиханяна, с. 7, М., 1966; Серебровский А. С. Генетический анализ, М., 1970, библиогр.


Н. П. Бочков, В. И. Иванов.