ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ

Категория :

Описание

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ, полимеры, — химические соединения, молекулы к-рых состоят из большого числа повторяющихся групп атомов или звеньев одинакового или различного хим. строения.

В. с. делят на природные (белки, нуклеиновые кислоты, полисахариды) и синтетические (полиэтилен, полибутадиен, феноло-альдегидные смолы и др.). Биол, значение природных В. с. определяется тем, что они составляют структурную основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности (белки, нуклеиновые кислоты, целлюлоза, крахмал и т. д.). Синтетические В.с. находят широкое применение в медицине: подсобные материалы санитарии и гигиены, мед. инструментарий (шприцы, канюли, катетеры), материалы леч. протезирования (кровеносные сосуды, клапаны сердца, хрусталики и стекловидное тело глаза, штифты для остеосинтеза, суставы, сухожилия, материалы для косметических операций, заменители плазмы крови, хирургические нити и клеи, материалы для стоматологии) и т. д. Мол. вес (масса) В. с. варьирует от нескольких тысяч до нескольких миллионов, а в отдельных случаях достигает десятков миллионов (напр., белки). В состав молекул В. с. (макромолекул) входят тысячи атомов, связанных силами главных и (или) координационных валентностей. Атомы или атомные группы В. с. могут располагаться в следующем порядке: 1) открытая цепь, в т. ч. линейная — линейные высокомолекулярные соединения (напр., полиэтилен, каучук натуральный, целлюлоза); 2) цепь с разветвлениями — разветвленные высокомолекулярные соединения (напр., крахмал); 3) трехмерная сетка, состоящая из отрезков цепного строения — сшитые высокомолекулярные соединения (напр., феноло-альдегидные смолы).

При одном и том же хим. составе макромолекулы могут быть построены из различных стереоизомеров звена. В. с., в макромолекулах к-рых есть определенная закономерность в расположении стереоизомеров, называют стереорегулярными; В. с., макромолекулы к-рых содержат несколько типов повторяющихся звеньев, называют сополимерами. В зависимости от характера распределения звеньев в макромолекулах последних различают регулярные и нерегулярные сополимеры. В первом случае распределение мономерных звеньев характеризуется определенной последовательностью. Примером регулярного сополимера может служить сополимер стирола с малеиновым ангидридом, построенный по принципу АВАВАВ... (А и В — различные мономерные звенья). Возможны и более сложные регулярные последовательности чередования звеньев, что, в частности, характерно для различных аминокислотных остатков в нек-рых белках или других природных высокополимерных веществах — биополимерах, напр, глицин-пролин-оксипролин в коллагене. В нуклеиновых кислотах и в большинстве белков последовательности звеньев задаются соответствующим кодом и определяют биохим, специфичность соответствующих соединений. В нерегулярных сополимерах распределение звеньев случайно, что характерно для многих синтетических сополимеров.

В зависимости от состава основной цепи В. с. делят на два больших класса: гомоцепные, основные цепи к-рых построены из одинаковых атомов, и гeтeроцeпные, содержащие одновременно атомы и других элементов, чаще всего кислорода, азота, кремния, фосфора (либо сами по себе, либо в комбинации с углеродом). Среди гомоцепных В. с. главное место занимают карбоцепные; их цепи состоят только из атомов углерода, напр, полиэтилен, полиметилметакрилат, полистирол, гуттаперча и др. Примерами гетероцепных В. с. являются полиэфиры (полиэтиленоксид, полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, целлюлоза, нек-рые кремнийорганические полимеры. В полимерах, содержащих атомы поливалентных металлов (напр., цинк, марганец, медь и др.), обычно ковалентные и ионные связи могут сочетаться с координационными (внутрикомплексные, или так наз. хелатные полимеры).

В зависимости от формы макромолекул бывают фибриллярные и глобулярные В. с. У фибриллярных В. с. молекулы, представляющие собой линейные или слабо разветвленные цепи, вытянуты преимущественно в одном направлении. Фибриллярные В. с. легко образуют надмолекулярные структуры в виде асимметричных пачек молекул — фибрилл. Примеры фибриллярных В. с.— коллаген, фиброин, целлюлозные волокна и др. Глобулярными называют В. с., макромолекулы к-рых имеют форму компактных шарообразных клубков — глобул. Глобулой может быть сильно разветвленная макромолекула, но возможно также образование глобул из фибриллярных В. с., связанное с изменением формы макромолекулы под влиянием внутримолекулярных взаимодействий. Примером глобулярных В. с. являются нек-рые белки (альбумин, глобин). Обратимые переходы глобулярных структур в фибриллярные при изменении внешних условий имеют важное значение в биологии (напр., явление денатурации белков).

Свойства

Полимерам присущ комплекс специфических физ.-хим. и механических свойств: способность к образованию высокопрочных анизотропных высокоориентированных волокон и пленок, способность проявлять большие и длительно развивающиеся обратимые деформации, характеризующиеся малыми значениями модуля упругости; способность к набуханию перед растворением и высокая вязкость растворов.

Этот комплекс свойств обусловлен высоким мол. весом (массой), цепным строением и гибкостью, т. е. способностью менять свою форму при сохранении всех хим. связей линейных макромолекул. При переходе от линейных цепей к разветвленным редким трехмерным сеткам и далее к густым сетчатым структурам эти свойства становятся все менее выраженными. Сильно «сшитые» В. с. нерастворимы, неплавки и не способны к высокоэластическим деформациям.

В. с. существуют в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулярной цепи. В кристаллических полимерах возможно возникновение разнообразных кристаллических форм (фибрилл, сферолитов, монокристаллов и др.), тип к-рых определяет свойства полимерного материала. Незакристаллизованные полимеры могут находиться в трех физ. состояниях: стеклообразном, высокоэластическом и вязкотекучем.

В. с. могут вступать в следующие разнообразные хим. реакции: 1) образование хим. связей между макромолекулами (так наз. сшивание), напр, вулканизация каучуков, дубление кожи; 2) распад макромолекулярных цепей на отдельные, более короткие фрагменты (деструкция); 3) реакции боковых функциональных групп с низкомолекулярными веществами, не затрагивающие основную цепь (так наз. полимераналогичные превращения в цепях); 4) внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, напр, внутримолекулярная циклизация. Когда имеют место превращения с участием функциональных групп (звеньев) макромолекул, полимерное состояние В. с. влияет на кинетику и термодинамику реакций и хим. строение образующихся продуктов. Реакционная способность функциональной группы (или отдельного звена, связанного с В. с.) по сравнению с реакционной способностью низкомолекулярного аналога этого звена определяется следующими эффектами: 1) эффект полимерной цепи, напр, за счет электронного влияния; 2) эффект концентрационный — за счет изменения микроконцентрации реагентов вблизи макромолекулы; 3) электростатический эффект, напр, в полимерах, содержащих заряженные звенья (полиэлектролиты); 4) эффект конфигурационный, напр, в случае стереорегулярных полимеров; 5) эффект формы макромолекул в растворе, когда, напр., переход глобулярной формы белка-фермента в фибриллярную изменяет скорость каталитической реакции в миллион и более раз; 6) эффект надмолекулярной организации — из-за высокой склонности макромолекул к агрегации и к структурированию даже в разбавленных растворах.

Нек-рые свойства В. с., напр, растворимость, способность к вязкому течению, стабильность и т. д., очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в нерастворимый, достаточно образования 1—2 поперечных связей на одну макромолекулу.

Получение

Синтетические В. с. получают реакциями Конденсация). Карбоцепные В. с. обычно получают полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями (напр., винил-хлорид, тетрафторэтилен, акриловая к-та, бутадиен и др.). Гетероцепные В. с. получают полимеризацией мономеров, содержащих кратные связи углерод—элемент (напр., —С=O, —C=N), а также в результате реакции поликонденсации. В качестве мономеров при этом наиболее часто используют дикарбоновые кислоты или их производные (напр., ангидриды, галогенангидриды и др.) в сочетании с бифункциональными соединениями, содержащими амино- или гидроксильные группы. Примером может служить реакция адипилхлорида [Cl—CO—(CH2)4 COCl] с гексаметилендиамином [NH2—(СН2)6—NH2], приводящая к образованию полигексаметиленадипамида (найлон-6,6). В. с. можно получать также полимеризацией циклических соединений, напр, капролактама с образованием линейного полиамида (найлон-6), или реакцией диизоцианатов с диолами, приводящей, напр., к получению полиуретанов. Поликонденсацией карбоксиангидридов альфа-аминокислот получают синтетические полипептиды, являющиеся моделями белковых макромолекул.

Природные В. с. образуются в процессе биосинтеза в клетках живых организмов, неорганические — в результате геохим. процессов, происходящих в земной коре.

Применение

Механическая прочность, эластичность, электроизоляционные и другие ценные свойства обусловили широкое применение В. с. в различных отраслях промышленности и в быту. Основные типы полимерных материалов — каучуки и резины, волокна, пластмассы, пленки, лаки, эмали, краски и клеи.

Установлены следующие требования, к-рым должны удовлетворять В. с., используемые в мед. целях: 1) чистота продукта; 2) возможность формовки в требуемое изделие без разложения полимера и каких-либо вредных изменений; 3) наличие необходимых хим., физ. и механических свойств для выполнения требуемых функций; 4) постоянство формы и свойств при стерилизации; 5) физ., хим. и механическая устойчивость при взаимодействии с окружающей биол, средой; 6) отсутствие токсикологических, пирогенных и канцерогенных свойств при контакте с организмом. Так, полимерный материал в контакте с кровью не должен вызывать тромбообразования и не влиять на нормальный механизм свертывания крови; не изменять конфигурацию или стабильность любой клетки или растворимой части крови, что могло бы привести к различным патологическим последствиям. Следует учитывать, что в живом организме под действием биол, среды могут происходить изменения физ. и хим. характеристик полимерных цепей, напр, гибкости вследствие минерализации, хим. деградации и т. д.

Синтетические и природные В. с. применяются для изготовления полунепроницаемых мембран, используемых в аппаратах «искусственное легкое» и «искусственная почка». В этом случае В. с. должны удовлетворять всем перечисленным выше требованиям, кроме того, обладать способностью набухать в воде и разделительной способностью. Мембраны для гемодиализа можно изготавливать из целлофана, получаемого из целлюлозы, сополимеров полиэтиленгликоля с полиэтилентерефталатом, сшитого поливинилпирролидона, полимер-полимерных комплексов — из полиэлектролитов противоположного знака заряда (напр., комплекс полистиролсульфоната натрия и поливинилбензилтриметиламмоний хлорида). Материалом для оксигенаторных мембран, обеспечивающих насыщение крови кислородом и удаление углекислого газа, служит, напр., полидиметилсилоксан.

Синтетические и природные В. с. применяют и в фармакологии (гепарин, крахмал, пепсин, глобулины, протамины и декстраны различного мол. веса, вводимые в кровяное русло). Поливинилпирролидон и полиглюкин используют как заменители плазмы крови, а первый, кроме того, как активный дезинтоксикатор ядов и токсических веществ, накапливающихся в организме. Комплексное соединение поливинилпирролидона с йодом, так же как и йодинол (комплекс поливинилового спирта с йодом), является эффективным бактерицидом и фунгицидом. Основу мазей составляют различные нетоксичные силиконовые полимеры, обладающие гидрофобными свойствами (см. Гидрофобные вещества). В основу мазей, таблеток или покрытий лекарств часто входит полимерный компонент — полиэтиленоксид.

Синтетические полимеры могут обладать и собственной физиол, активностью. Так, поли-N-окси-2-винил-пиридин используют для лечения силикоза, полимерные четвертичные аммониевые соли из тетраметилгексаметилендиамида и триметилендибромида используют для связывания в организме избыточного гепарина. В. с., если они несут на себе фармакологически активную молекулу или группу, могут пролонгировать действие лекарственных веществ. Кроме того, макромолекулы В. с. могут служить депо лекарственных препаратов, способствуя постепенному выделению их в организм. Такие комбинации В. с. с лекарственными препаратами получают либо полимеризацией мономеров, имеющих двойную связь и содержащих лекарственный фрагмент (напр., акрилоилновокаин), либо методом полимераналогичных превращений с водорастворимыми полимерами (напр., поливиниловый спирт, поливинил-пиридин, декстраны и др.).

См. также Полимерные материалы.


Библиогр.: Лосев И. П. и Tростянская Е. Б. Химия синтетических полимеров, М., 19 71; Полимеры в медицине, пер. с англ., под ред. Н. А. Платэ, М., 1969; Рабинович И. М. Применение полимеров в медицине, Л., 1972, библиогр.; Сидельковская Ф. П. Химия N-винилпирролидона и его полимеров, М., 1970; Стреиихеев A. А., Деревицкая В. А. и Слонимский Г. Л. Основы химии высокомолекулярных соединений, М., 1966; Ушаков С. Н. Синтетические полимеры лекарственного назначения, Л., 1962.


Н. А. Платэ, Ю. Э. Кирш.